
Companion
eBook
Available

 COMPANION eBOOK SEE LAST PAGE FOR DETAILS ON $10 eBOOK VERSION

US $39.99

Shelve in
Mobile Computing/Macintosh Programming

User level:
Beginner–Intermediate

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

ISBN 978-1-4302-2459-4

9 781430 224594

53999

• A complete, soup-to-nuts course in iPhone and iPod touch
programming, written in an easy-to-read style and perfect for
beginners and advanced readers alike

• Packed full of intricate, reusable examples that showcase the
nearly endless possibilities of the iPhone SDK

• Updated edition fully compatible with Apple’s iPhone SDK 3

Are you a programmer looking for a new challenge? Does the thought of
building your very own iPhone application make your heart race and your

pulse quicken? If so, then Beginning iPhone 3 Development is the book for you.

Assuming a minimal working knowledge of Objective-C, this book starts with
the basics, walking you through the process of downloading and installing
Apple’s free iPhone SDK 3 and stepping you through the creation of your !rst
simple iPhone application. You’ll move on from there, mastering the iPhone
interface elements that you’ve come to know and love, such as buttons,
switches, pickers, toolbars, and sliders.

You’ll master tables and learn how to save your data using the iPhone !le system,
as well as using SQLite, iPhone’s built-in database management system. You’ll also
draw using Quartz 2D and OpenGL ES; add gestural support to your applications;
work with the camera, the photo library, the accelerometer, preferences, local-
ization, and Core Location; and do much more.

Apple’s iPhone SDK 3, this book, and your imagination are all you’ll need to
start building your very own best-selling iPhone applications.

Dave Mark is a longtime Mac developer and author of a number
of bestselling books including Learn C on the Mac, the Macintosh
Programming Primer series, and Ultimate Mac Programming.

Je! LaMarche is a seasoned Mac developer. He’s written about Cocoa
and Objective-C for MacTech Magazine and has written articles for
Apple’s Developer Technical Services web site.

this print for content only—size & color not accurate spine = 1.114" 584 page count

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

 SPOT MATTE

A complete course in iPhone
and iPod touch programming

Beginning
iPhone 3 Development

Exploring the iPhone SDK
Dave Mark | Jeff LaMarche

Beginning iPhone 3 Developm
ent

Mark
LaMarche

Updated

and revised

for SDK 3

RE
LA

TE
D

 T
IT

LE
S

www.apress.com
www.iphonedevbook.com

DAVE MARK
JEFF LAMARCHE

Beginning iPhone 3
Development
Exploring the iPhone SDK

24594FM.indd 1 6/25/09 2:18:04 PM

Download at Boykma.Com

Beginning iPhone 3 Development: Exploring the iPhone SDK

Copyright © 2009 by Dave Mark and Jeff LaMarche

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2459-4

ISBN-13 (electronic): 978-1-4302-2460-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Lead Editors: Clay Andres, Douglas Pundick
Technical Reviewer: Mark Dalrymple
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Grace Wong, Beth Christmas
Copy Editors: Kim Wimpsett, Heather Lang
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Dina Quan
Proofreader: Nancy Sixsmith
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA
94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
 versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com.

24594FM.indd 2 6/25/09 2:18:04 PM

Download at Boykma.Com

http://www.apress.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

To Deneen, you are the light of my life. LFU4FREIH. . .
—Dave

To the most important people in my life, my wife and kids.
—Jeff

24594FM.indd 3 6/25/09 2:18:04 PM

Download at Boykma.Com

24594FM.indd 4 6/25/09 2:18:05 PM

Download at Boykma.Com

v

Contents at a Glance

About the Author .xvii
About the Technical Reviewer . xix
Acknowledgments . xxi
Preface to Beginning iPhone 3 Development . xxiii
Preface to Beginning iPhone 2 Development .xxv

CHAPTER 1 Welcome to the Jungle . 1

CHAPTER 2 Appeasing the Tiki Gods . 13

CHAPTER 3 Handling Basic Interaction . 31

CHAPTER 4 More User Interface Fun . 57

CHAPTER 5 Autorotation and Autosizing . 99

CHAPTER 6 Multiview Applications . 119

CHAPTER 7 Tab Bars and Pickers . 145

CHAPTER 8 Introduction to Table Views . 193

CHAPTER 9 Navigation Controllers and Table Views . 247

CHAPTER 10 Application Settings and User Defaults . 321

CHAPTER 11 Basic Data Persistence . 347

CHAPTER 12 Drawing with Quartz and OpenGL . 397

CHAPTER 13 Taps, Touches, and Gestures . 437

CHAPTER 14 Where Am I? Finding Your Way with Core Location 465

CHAPTER 15 Whee! Accelerometer! . 477

CHAPTER 16 iPhone Camera and Photo Library . 499

CHAPTER 17 Application Localization . 511

CHAPTER 18 Where to Next? . 531

INDEX . 537

24594FM.indd 5 6/25/09 2:18:05 PM

Download at Boykma.Com

24594FM.indd 6 6/25/09 2:18:05 PM

Download at Boykma.Com

vii

Contents

About the Author .xvii
About the Technical Reviewer . xix
Acknowledgments . xxi
Preface to Beginning iPhone 3 Development . xxiii
Preface to Beginning iPhone 2 Development .xxv

CHAPTER 1 Welcome to the Jungle .1

What This Book Is . 2
What You Need Before You Can Begin . 2
What You Need to Know Before You Begin . 5
What’s Different About Coding for iPhone? . 6

Only One Running Application . 6
Only One Window . 6
Limited Access . 6
Limited Response Time . 7
Limited Screen Size . 7
Limited System Resources . 7
No Garbage Collection . 8
Some New Stuff . 8
A Different Approach . 8

What’s in This Book . 8
Chapter 2 . 8
Chapter 3 . 8
Chapter 4 . 9
Chapter 5 . 9
Chapter 6 . 9
Chapter 7 . 9
Chapter 8 . 9
Chapter 9 . 9
Chapter 10 . 9
Chapter 11 . 9
Chapter 12 .10
Chapter 13 .10
Chapter 14 .10

24594FM.indd 7 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTSviii

Chapter 15 .10
Chapter 16 .10
Chapter 17 .10
Chapter 18 .10

What’s New in This Update? .11
Are You Ready? .11

CHAPTER 2 Appeasing the Tiki Gods . 13

Setting Up Your Project in Xcode .13
The Xcode Project Window .16

Introducing Interface Builder .19
What’s in the Nib File? .21
Adding a Label to the View .22

Some iPhone Polish—Finishing Touches .25
Ready to Compile and Run .28

Bring It on Home .29

CHAPTER 3 Handling Basic Interaction . 31

The Model-View-Controller Paradigm .31
Creating Our Project .33
Creating the View Controller .33

Outlets .34
Actions .36
Adding Actions and Outlets to the View Controller36
Adding Actions and Outlets to the Implementation File . . .39

Using the Application Delegate .44
Editing MainWindow.xib .47
Editing Button_FunViewController.xib .49

Creating the View in Interface Builder .49
Connecting Everything .52
Trying It Out .56

Bring It on Home .56

CHAPTER 4 More User Interface Fun . 57

A Screen Full of Controls .58
Active, Static, and Passive Controls .59
Creating the Application .60

Importing the Image .60
Implementing the Image View and Text Fields.61

24594FM.indd 8 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTS ix

Adding the Image View .63
Adding the Text Fields .67
Set the Attributes for the Second Text Field 72
Connecting Outlets .72

Build and Run .72
Making the Keyboard Go Away When Done Is Tapped73
Touching the Background to Close the Keyboard75

Implementing the Slider and Label .77
Determining Outlets .77
Determining Actions .78
Adding Outlets and Actions .78
Adding the Slider and Label .79
Connecting the Actions and Outlets .81

Implementing the Switches, Button, and Segmented Control. . .81
Determining Outlets .81
Determining Actions .82
Adding the Switches, Button, and Segmented Control85
Connecting the Switch Outlets and Actions86
Adding the Button .86

Implementing the Action Sheet and Alert .87
Conforming to the Action Sheet Delegate Method88
Showing the Action Sheet .88
The Action Sheet Delegate and Creating an Alert91

Spiffing Up the Button .92
The viewDidLoad Method .93
Control States .94
Stretchable Images .94

Being a Good Memory Citizen .95
Crossing the Finish Line .96

CHAPTER 5 Autorotation and Autosizing 99

Handling Rotation Using Autosize Attributes 101
Specifying Rotation Support . 101
Designing an Interface with Autosize Attributes 103
Autosize Attributes . 104
Setting the Buttons’ Autosize Attributes 105

Restructuring a View When Rotated . 107
Declaring and Connecting Outlets . 108
Moving the Buttons on Rotation . 108

24594FM.indd 9 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTSx

Swapping Views . 110
Determining Outlets . 112
Determining Actions . 112
Declaring Actions and Outlets . 112
Designing the Two Views . 113
Implementing the Swap and the Action 114

Rotating Out of Here . 117

CHAPTER 6 Multiview Applications . 119

The View Switcher Application . 122
The Architecture of a Multiview Application 123

Anatomy of a Content View . 123
Building View Switcher . 124

Creating Our View Controller and Nib Files 125
Modifying the App Delegate . 127
SwitchViewController.h . 128
Modifying MainWindow.xib . 128
Writing SwitchViewController.m . 132
Implementing the Content Views . 136

Animating the Transition . 139
Switching Off . 143

CHAPTER 7 Tab Bars and Pickers . 145

The Pickers Application . 146
Delegates and Datasources . 148
Setting Up the Tab Bar Framework . 149

Creating the Files . 149
Adding the Root View Controller . 150

Implementing the Date Picker . 155
Implementing the Single Component Picker 159

Declaring Outlets and Actions . 159
Building the View . 160
Implementing the Controller as Datasource and

Delegate . 160
Implementing a Multicomponent Picker . 165

Declaring Outlets and Actions . 165
Building the View . 166
Implementing the Controller . 167

Implementing Dependent Components . 170

24594FM.indd 10 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTS xi

Creating a Simple Game with a Custom Picker 177
Writing the Controller Header File . 177
Building the View . 178
Adding Image Resources . 179
Implementing the Controller . 179
The spin Method . 182
The viewDidLoad Method . 183
Final Details . 186
Linking in the Audio Toolbox Framework 190

Final Spin . 190

CHAPTER 8 Introduction to Table Views 193

Table View Basics . 194
Grouped and Plain Tables . 195

Implementing a Simple Table . 197
Designing the View . 197
Writing the Controller . 198

Adding an Image . 202
Table View Cell Styles . 204

Additional Configurations . 205
Setting the Indent Level . 206
Handling Row Selection . 206
Changing Font Size and Row Height . 208
What Else Can the Delegate Do? . 210

Customizing Table View Cells . 210
The Cells Application . 211
Adding Subviews to the Table View Cell 211
Using a Custom Subclass of UITableViewCell 216

Grouped and Indexed Sections . 220
Building the View . 220
Importing the Data. 221
Implementing the Controller . 222
Adding an Index . 226

Implementing a Search Bar . 227
Rethinking the Design . 227
A Deep Mutable Copy . 228
Updating the Controller Header File . 230
Modifying the View . 231
Modifying the Controller Implementation 233

Putting It All on the Table . 246

24594FM.indd 11 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTSxii

CHAPTER 9 Navigation Controllers and Table Views 247

Navigation Controllers . 248
Stacky Goodness . 248
A Stack of Controllers . 248

Nav, a Hierarchical Application in Six Parts 249
Constructing the Nav Application’s Skeleton 252

Creating the First Level View Controller 253
Setting Up the Navigation Controller 254

Our First Subcontroller: The Disclosure Button View 261
Our Second Subcontroller: The Checklist . 268
Our Third Subcontroller: Controls on Table Rows 274
Our Fourth Subcontroller: Moveable Rows 281

Editing Mode . 281
Creating a New Second-Level Controller 281

Our Fifth Subcontroller: Deletable Rows . 288
Our Sixth Subcontroller: An Editable Detail Pane 294

Creating the Data Model Object . 294
Creating the Controllers . 296
Creating the Detail View Controller . 300

But There’s One More Thing. 316
Breaking the Tape . 319

CHAPTER 10 Application Settings and User Defaults 321

Getting to Know Your Settings Bundle . 321
The AppSettings Application . 323
Creating the Project . 324
Working with the Settings Bundle . 326

Adding a Settings Bundle to Our Project 326
Setting Up the Property List . 327
Adding a Text Field Setting . 329
Adding a Secure Text Field Setting . 331
Adding a Multivalue Field . 331
Adding a Toggle Switch Setting . 332
Adding the Slider Setting . 333
Adding a Child Settings View . 335

Reading Settings in Our Application . 336
Changing Defaults from Our Application . 341
Beam Me Up, Scotty . 345

24594FM.indd 12 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTS xiii

CHAPTER 11 Basic Data Persistence . 347

Your Application’s Sandbox . 348
Getting the Documents Directory . 349
Getting the tmp Directory . 350

File Saving Strategies . 350
Single-File Persistence . 350
Multiple-File Persistence . 351

Persisting Application Data . 351
Property List Serialization . 351

The Persistence Application . 353
Creating the Persistence Project . 353
Designing the Persistence Application View 354
Editing the Persistence Classes . 355
Archiving Model Objects . 359
Implementing NSCopying . 361

The Archiving Application . 363
Implementing the FourLines Class . 363
Implementing the PersistenceViewController Class 365

Using iPhone’s Embedded SQLite3 . 368
Setting Up a Project to Use SQLite3 . 371

Using Core Data . 379
Entities and Managed Objects . 380
Key-Value Coding . 382
Putting It All in Context. 383
Creating New Managed Objects . 384
Retrieving Managed Objects . 384
Designing the Data Model . 385
Creating the Persistence View and Controller 388
Making Persistence View Controller our Application’s

Root Controller . 394
Persistence Rewarded . 396

CHAPTER 12 Drawing with Quartz and OpenGL 397

Two Views of a Graphical World . 397
This Chapter’s Drawing Application . 398
The Quartz Approach to Drawing . 399

Quartz 2D’s Graphics Contexts . 399
The Coordinates System . 400
Specifying Colors . 402
Drawing Images in Context . 404

24594FM.indd 13 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTSxiv

Drawing Shapes: Polygons, Lines, and Curves 404
Quartz 2D Tool Sampler: Patterns, Gradients, and

Dash Patterns . 404
Building the QuartzFun Application . 406

Creating a Random Color . 406
Defining Application Constants . 407
Implementing the QuartzFunView Skeleton 408
Adding Outlets and Actions to the View Controller 411
Updating QuartzFunViewController.xib 413
Drawing the Line . 415
Drawing the Rectangle and Ellipse . 417
Drawing the Image . 418
Optimizing the QuartzFun Application 420

Some OpenGL ES Basics . 424
Building the GLFun Application . 424
Design the Nib, Add the Frameworks, Run the App 435

Drawing a Blank . 436

CHAPTER 13 Taps, Touches, and Gestures 437

Multitouch Terminology. 438
The Responder Chain . 438

Forwarding an Event: Keeping the Responder
Chain Alive . 439

The Multitouch Architecture . 440
The Four Gesture Notification Methods 441

The Touch Explorer Application. 442
The Swipes Application . 446
Implementing Multiple Swipes . 449
Detecting Multiple Taps . 452
Detecting Pinches . 456
Defining Custom Gestures . 460

The CheckPlease Touch Methods . 463
Garçon? Check, Please! . 464

CHAPTER 14 Where Am I? Finding Your Way with
Core Location . 465

The Location Manager . 466
Setting the Desired Accuracy . 466
Setting the Distance Filter . 466

24594FM.indd 14 6/25/09 2:18:05 PM

Download at Boykma.Com

CONTENTS xv

Starting the Location Manager . 467
Using the Location Manager Wisely . 467

The Location Manager Delegate . 467
Getting Location Updates . 468
Getting Latitude and Longitude Using CLLocation 468
Error Notifications . 469

Trying Out Core Location . 470
Updating Location Manager . 474
Determining Distance Traveled . 475

Wherever You Go, There You Are . 476

CHAPTER 15 Whee! Accelerometer! . 477

Accelerometer Physics . 477
Accessing the Accelerometer . 478

UIAcceleration . 479
Implementing the accelerometer:didAccelerate:

Method . 480
Shake and Break . 483

The Code That Breaks . 484
Load the Simulation Files . 487
All Better—The Healing Touch . 488

The Rolling Marble Program . 488
Implementing the Ball View Controller 489
Writing the Ball View . 490
Calculating Ball Movement . 494

Rolling On . 497

CHAPTER 16 iPhone Camera and Photo Library 499

Using the Image Picker and UIImagePickerController 500
Implementing the Image Picker Controller Delegate 502
Road Testing the Camera and Library . 503

Designing the Interface . 504
Implementing the Camera View Controller 505

It’s a Snap! . 509

CHAPTER 17 Application Localization . 511

Localization Architecture . 511
Using String Files . 513

Creating the Strings File . 514

24594FM.indd 15 6/25/09 2:18:06 PM

Download at Boykma.Com

CONTENTSxvi

Real-World iPhone: Localizing Your Application 515
Looking at the Current Locale . 518
Trying Out LocalizeMe. 519
Localizing the Nib . 520
Looking at the Localized Project Structure 522
Localizing an Image . 524
Localizing the Application Icon . 525
Generating and Localizing a Strings File 526

Auf Wiedersehen . 529

CHAPTER 18 Where to Next? . 531

Getting Unstuck . 531
Apple’s Documentation . 532
Mailing Lists . 532
Discussion Forums . 532
Web Sites . 533
Blogs . 533
Dave and Jeff Blogs and Twitter . 534
More iPhone 3 Development . 534
And If All Else Fails. . . . 534

Farewell . 535

INDEX . 537

24594FM.indd 16 6/25/09 2:18:06 PM

Download at Boykma.Com

About the Authors

Dave Mark is a longtime Mac developer and author and has written
a number of books on Mac development, including Learn C on
the Mac (Apress, 2009), The Macintosh Programming Primer series
 (Addison-Wesley, 1992), and Ultimate Mac Programming (Wiley, 1995).
Dave loves the water and spends as much time as possible on it, in it,
or near it. He lives with his wife and three children in Virginia.

Jeff LaMarche is a longtime Mac developer and iPhone Developer
with more than 20 years of programming experience. He’s written on
Cocoa and Objective-C for MacTech Magazine and has written articles
for Apple’s Developer Technical Services web site. He has experience
working in enterprise software as both a developer for PeopleSoft,
starting in the late 1990s, and later as an independent consultant,
though he now focuses exclusively on programming for the Mac
and iPhone.

24594FM.indd 17 6/25/09 2:18:06 PM

Download at Boykma.Com

24594FM.indd 18 6/25/09 2:18:06 PM

Download at Boykma.Com

xix

About the Technical
Reviewer

Mark Dalrymple is a longtime Mac and Unix programmer, working on
cross-platform toolkits, Internet publishing tools, high-performance
web servers, and end-user desktop applications. He’s also the princi-
pal author of Advanced Mac OS X Programming (Big Nerd Ranch,
2005) and Learn Objective-C on the Mac (Apress, 2009). In his spare
time, he plays trombone and bassoon and makes balloon animals.

24594FM.indd 19 6/25/09 2:18:06 PM

Download at Boykma.Com

24594FM.indd 20 6/25/09 2:18:06 PM

Download at Boykma.Com

xxi

Acknowledgments

This book could not have been written without our mighty, kind, and clever families, friends,
and cohorts. First and foremost, eternal thanks to Terry and Deneen for putting up with us
and for keeping the rest of the universe at bay while we toiled away on this book. This proj-
ect saw us tucked away in our writers’ cubby for many long hours, and somehow, you didn’t
complain once. We are lucky men.

This book could not have been written without the fine folks at Apress. More than just a
publisher, they became fast friends. Clay Andres brought us to Apress in the first place and
carried this book on his back. Dominic Shakeshaft was the brilliant mastermind who dealt
with all of our complaints with a smile on his face and somehow found a solution that made
sense and made this book better. Our editor, Douglas Pundick, reviewed every single word
and made some really helpful suggestions. Laura Esterman, Beth Christmas, and Grace
Wong, our wonderful and gracious project managers on the two editions, were the irresist-
ible force to our slowly movable object. They kept the books on the right track and always
kept us pointed in the right direction. Heather Lang and Kim Wimpsett, copy editors extraor-
dinaire, you were both such a pleasure to work with; please, please, please copyedit our next
book, too! Laura Cheu and the production team took all these pieces and somehow made
them whole, and Dina Quan somehow coaxed such beautiful printed pages out of our Word
documents. Kari Brooks-Copony pulled together an incredibly yummy interior design. Paul
Carlstroem and Pete Aylward assembled the marketing message and got it out to the world.
To all the folks at Apress, thank you, thank you, thank you!

A very special shout-out to our incredibly talented technical reviewer, Mark Dalrymple—in
addition to providing insightful feedback, Mark tested all the code in this book and helped
keep us on the straight and narrow. Thanks, Mark!

Finally, thanks to our children for their patience while their dads were working so hard. This
book is for you, Maddie, Gwynnie, Ian, Kai, Daniel, Kelley, and Ryan.

24594FM.indd 21 6/25/09 2:18:06 PM

Download at Boykma.Com

24594FM.indd 22 6/25/09 2:18:07 PM

Download at Boykma.Com

xxiii

Preface to Beginning
iPhone 3 Development

What an amazing journey! When we set out to write a book on iPhone development, it was
purely a labor of love. We never dreamed our book would end up in so many people’s hands.
Just imagine, our little book, available around the world. Who’d of thunk it? This wave of
interest took us completely by surprise. And, of course, we are delighted by every bit of it.

So, what’s new with this edition? Lots! For starters, we’ve gone through every single line of
code and made whatever changes were necessary to bring each project into line with SDK
3. As you’d expect, we’ve gone through the text, too, so the explanations are all up-to-date.
We’ve also gone through the errata from our Apress web page and the errors reported on
our own web site, http://iphonedevbook.com, and we’ve done our best to scrub each and
every error from the book. Of course, nothing is perfect, so please do report any errors you
do find so we can continue to update the book through each new printing.

Is it worth buying this book if you already own the first edition? This is an excellent ques-
tion that has spurred many a conversation with Apress and between the two of us. There is
a lot of subtle new material, including a new project that introduces Core Data, which is an
important persistence technology that has made its way to iPhone. In addition, many of the
discussions have been clarified in an attempt to make some of the more complex topics a bit
easier to understand.

We’ve definitely made the book better. If you’ve already been through the first edition and
feel very comfortable with all the material, go ahead and move on to More iPhone 3 Develop-
ment, which takes up where this book leaves off, discussing the amazing new technologies
introduced with SDK 3.

If you haven’t made it through the entire first edition yet, if you feel a bit fuzzy still, or if you
just want to support us as authors, then by all means pick up this second edition. We do
appreciate your support. Be sure to check out http://iphonedevbook.com, and drop us
a line to let us know about your amazing new apps. We look forward to seeing you on the
forum. Happy coding!

Dave and Jeff

24594FM.indd 23 6/25/09 2:18:07 PM

Download at Boykma.Com

http://iphonedevbook.com
http://iphonedevbook.com

24594FM.indd 24 6/25/09 2:18:07 PM

Download at Boykma.Com

xxv

Preface to Beginning
iPhone 2 Development

“I haven’t been this excited about a programming platform since I first set eyes on the Mac.”
We’ve been hearing this sentiment a lot lately, and frankly, we feel exactly the same way. The
iPhone is thrilling, a fantastic piece of technology, and a brilliant combination of function
and fun. And the things you can do as a programmer!

This world is just beginning to open up. Spend some time browsing through the App Store,
and you can’t help but be filled with inspiration. And, if designing your own iPhone applica-
tion just isn’t your thing, the opportunities for iPhone development consulting are limitless.
Everyone seems to want to port their product to the platform. Our phones have been ring-
ing off the hook.

If you get a few moments, swing by our web site, http://iphonedevbook.com, and say “hi.”
Tell us about your own projects. We’d love to hear from you.

Dave and Jeff

24594FM.indd 25 6/25/09 2:18:07 PM

Download at Boykma.Com

http://iphonedevbook.com

24594FM.indd 26 6/25/09 2:18:07 PM

Download at Boykma.Com

Chapter 1

1

s
Welcome to the
Jungle

o, you want to write iPhone applications? Well, we can’t say that we blame
you. iPhone might just be the most interesting new platform to come around
in a long time; certainly, it is the most interesting mobile platform to date,
especially now that Apple has provided a set of elegant, well-documented
tools for developing iPhone applications. And with the recent release of
version 3.0 of the iPhone software development kit (SDK), things have only
gotten better.

NOTE
This book has been newly revised and updated to work with the latest version of the
SDK. In some places, we have chosen to use new functions or methods introduced with
version 3.0 that may prove incompatible with earlier versions of the SDK. We’ll be sure to
point those situations out as they arise in this book.

Be sure to download the latest and greatest source code archives from the book’s web
site at http://iphonedevbook.com.

We’ve added conditional macros to that code to allow it to build with the latest version
of the SDK, as well as with older versions of the SDK. We’ll update the code as new ver-
sions of the SDK are released, so be sure to check the site periodically.

24594ch01.indd 1 6/24/09 4:20:21 PM

Download at Boykma.Com

http://iphonedevbook.com

CHAPTER 1: Welcome to the Jungle2

What This Book Is
This book is a guide to help you get started down the path to creating your own iPhone
applications. Our goal is to get you past the initial learning curve to help you understand
the way iPhone applications work and how they are built. As you work your way through
this book, you will create a number of small applications, each designed to highlight spe-
cific iPhone features and show you how to control or interact with those features. If you
combine the foundation you’ll gain by making your way through this book with your own
creativity and determination and then add in the extensive and well-written documentation
provided by Apple, you’ll have everything you’ll need to build your own professional iPhone
applications.

NOTE
Dave and Jeff have a forum set up for this book. It’s a great place to meet like-minded folks, get your ques-
tions answered, and even answer other people’s questions. It’s at http://iphonedevbook.com/
forum. Be sure to check it out!

What You Need Before You Can Begin
Before you can begin writing software for iPhone, you’ll need a few things. For starters,
you’ll need an Intel-based Macintosh running Leopard (OS X 10.5.6 or later). Any Macintosh
 computer—laptop or desktop—released since mid-2006 should work just fine.

You do not need a top-of-the-line model to get started, so a MacBook or Mac Mini will serve
admirably. The older and slower the model, the more it will benefit from a RAM upgrade,
however.

You’ll also need to sign up to become a registered iPhone developer. Apple requires this step
before you’re allowed to download the iPhone SDK.

To sign up, navigate to http://developer.apple.com/iphone/, which will bring you to a
page similar to the one shown in Figure 1-1. Somewhere on the page is a link to the latest
and greatest iPhone SDK. Click the link, and you’ll be brought to a sign-up page with three
options.

24594ch01.indd 2 6/24/09 4:20:21 PM

Download at Boykma.Com

http://developer.apple.com/iphone/
http://iphonedevbook.com/

CHAPTER 1: Welcome to the Jungle 3

Figure 1-1. Apple’s iPhone Dev Center web site

The simplest (and free) option is to click the button that reads Download the Free SDK. You’ll
be prompted for your Apple ID. Use your Apple ID to log in. If you don’t have an Apple ID,
click the Create Apple ID button, create one, and then log in. Once you are logged in, you’ll be
taken to the main iPhone development page. Not only will you find a link to the SDK down-
load, but you’ll also find links to a wealth of documentation, videos, sample code, and the
like, all dedicated to teaching you the finer points of iPhone application development.

24594ch01.indd 3 6/24/09 4:20:21 PM

Download at Boykma.Com

CHAPTER 1: Welcome to the Jungle4

One of the most important elements included with the iPhone SDK is Xcode, Apple’s inte-
grated development environment (IDE). Xcode includes tools for creating and debugging
source code, compiling applications, and performance tuning the applications you’ve writ-
ten. By the time you are finished with this book, you will become an Xcode aficionado!

The free SDK also includes a simulator that will allow you to run most iPhone programs on
your Mac. This is perfect for learning how to program your iPhone. The free option will not,
however, allow you to download your applications onto your actual iPhone (or iPod touch).
It also does not give you the ability to distribute your applications on Apple’s iPhone App
Store. For that, you’ll need one of the other two options, which aren’t free.

NOTE
The simulator does not support hardware-dependent features, such as iPhone’s accelerometer or camera.
For those, you’ll need the alternate options as well. Just thought you’d like to know!

The Standard program costs $99. It provides a host of development tools and resources,
technical support, distribution of your application via Apple’s App Store, and, most impor-
tantly, the ability to test and debug your code on an iPhone rather than just in the simulator.

The Enterprise program costs $299 and is designed for companies developing proprietary,
in-house applications for iPhone and iPod touch and for those developing applications for
the Apple’s App Store and with more than one developer working on the project.

For more details on these two programs, visit http://developer.apple.com/iphone/
program/.

Because iPhone is an always-connected mobile device that uses other companies’ wireless
infrastructure, Apple has had to place far more restrictions on iPhone developers than it ever
has on Mac developers, who are able to write and distribute programs with absolutely no
oversight or approval from Apple.

Apple has not added restrictions to be mean but rather is trying to minimize the chances of
malicious or poorly written programs being distributed that could degrade performance on
the shared network. Developing for the iPhone may seem like it presents a lot of hoops to
jump through, but Apple has gone through quite an effort to make the process as painless
as possible. It should be noted too that $99 is still considerably less than buying, for exam-
ple, Visual Studio, which is Microsoft’s software development IDE.

This may seem obvious, but you’ll also need an iPhone or iPod touch. While much of your
code can be tested using the iPhone Simulator, not all programs can be, and even those that
can really need to be thoroughly tested on an actual iPhone before you ever consider releas-
ing your application to the public.

24594ch01.indd 4 6/24/09 4:20:21 PM

Download at Boykma.Com

http://developer.apple.com/iphone/

CHAPTER 1: Welcome to the Jungle 5

NOTE
If you are going to sign up for the Standard or Enterprise program, you should go do it right now. The
approval process can take a while, and you’ll need that approval to be able to run your applications on
your iPhone or iPod touch. Don’t worry, though, because all the projects in the first several chapters and
the majority of the applications in this book will run just fine on the iPhone Simulator.

What You Need to Know Before You Begin
This book assumes that you already have some programming knowledge. It assumes that
you understand the fundamentals of object-oriented programming such as what objects,
loops, and variables are, for example. It also assumes you are familiar with the Objective-C
programming language. Cocoa Touch, the part of the SDK that you will be using through
most of this book, uses Objective-C 2.0, but don’t worry if you’re not familiar with the more
recent additions to the Objective-C language. We’ll be sure to highlight any of the 2.0 lan-
guage features we take advantage of and explain how they work and why we are using
them.

You should also be familiar with the iPhone itself. Just as you would with any platform for
which you wanted to write an application, get to know the iPhone’s nuances and quirks, and
get familiar with the iPhone interface and with the way Apple’s iPhone programs look and
feel.

NEW TO OBJECTIVE-C?
If you have not programmed in Objective-C before, here are a few resources to help you get started.

First, check out Learn Objective-C on the Mac, an excellent and approachable introduction to
Objective-C by Mac programming experts Mark Dalrymple and Scott Knaster (Apress, 2008):

http://www.apress.com/book/view/9781430218159

Next, navigate over to the Apple iPhone Dev Center, and download a copy of The Objective-C 2.0
 Programming Language, a very detailed and extensive description of the language and a great
 reference guide:

http://developer.apple.com/iphone/library/
 documentation/Cocoa/Conceptual/ObjectiveC

Note that you’ll be asked to log in before you are taken to the start of this document.

24594ch01.indd 5 6/24/09 4:20:21 PM

Download at Boykma.Com

http://developer.apple.com/iphone/library/
http://www.apress.com/book/view/9781430218159

CHAPTER 1: Welcome to the Jungle6

What’s Different About Coding for iPhone?
If you have never used Cocoa or its predecessor NextSTEP, you may find Cocoa Touch, the
application framework you’ll be using to write iPhone applications, a little alien; there are
some fundamental differences from other common application frameworks such as those
used when building .NET or Java applications. Don’t worry too much if you feel a little lost at
first. Just keep plugging away at the exercises, and it’ll all start to fall into place after a while.

If you have written programs using Cocoa or NextSTEP, you’re going to find a lot in the
iPhone SDK that is familiar to you. A great many classes are unchanged from the versions
that are used to develop for Mac OS X, and even those that are different tend to follow the
same basic principles and use design patterns similar to the ones you are already familiar
with. There are, however, several differences between Cocoa and Cocoa Touch.

Regardless of your background, you need to keep in mind some key differences between
iPhone development and desktop application development.

Only One Running Application
With the exception of the operating system itself, only one application can be running at any
given time on an iPhone. This may change in the future as iPhone gets more memory and
more powerful processors, but for the time being, your application will be the only one run-
ning while your code is executing. When your application isn’t the one the user is interacting
with, it won’t be able to do anything.

Only One Window
Unlike desktop and laptop operating systems where many running programs coexist, each
with the ability to create and control multiple windows, iPhone gives your application just
one “window” to work with. All of your application’s interaction with the user takes place
inside this one window, and its size is fixed at the size of the iPhone screen.

Limited Access
Unlike programs on a computer that pretty much have access to everything the user who
launched them does, iPhone seriously restricts what your application can get to. You can
read and write files only from the part of iPhone’s file system that was created for your appli-
cation. This area is called your application’s sandbox, and it is where your application will
store documents, preferences, and every other kind of data it may need to store.

Your application is also constrained in some other ways; you will not be able to access low-
number network ports on iPhone, for example, or do anything else that would typically
require root or administrative access on a desktop computer.

24594ch01.indd 6 6/24/09 4:20:22 PM

Download at Boykma.Com

CHAPTER 1: Welcome to the Jungle 7

Limited Response Time
Because of the way it is used, iPhone needs to be snappy and expects the same of your
application. When your program is launched, you have to get your application open, prefer-
ences and data loaded, and the main view shown on the screen as fast as possible—in not
more than a few seconds. At any time when your program is running, it may have the rug
pulled out from under it. If the user presses the home button, iPhone goes home, and you
have to quickly save everything and quit. If you take longer than five seconds to save and
give up control, your application process will be killed, regardless of whether you are fin-
ished saving.

As a result, you have to carefully craft your iPhone applications to make sure data is not lost
when the user quits.

Limited Screen Size
iPhone’s screen is really nice. When introduced, it was the highest-resolution screen avail-
able on a consumer device, by far. But the iPhone display just isn’t all that big, and as a result,
you have a lot less room to work with than on modern computers, just 320 480 pixels. To
give an interesting contrast, at the time of this writing, Apple’s least expensive iMac supports
1680 1050 pixels, and its least expensive notebook computer, the MacBook, supports 1280

 800 pixels. On the other end of the spectrum, Apple’s largest monitor, the 30-inch Cinema
Display, offers a whopping 2560 1600 pixels.

Limited System Resources
Any old-time programmers who are reading this are likely laughing at the idea of a machine
with at least 128MB of RAM and 4GB of storage being in any way resource constrained, but
it is true. Developing for the iPhone is not, perhaps, in exactly the same league as trying to
write a complex spreadsheet application on a machine with 48KB of memory, but given the
graphical nature of iPhone and all the things it is capable of doing, running out of memory is
very, very easy. The versions of iPhone available right now all have either 128MB or 256MB of
physical RAM, though that will likely increase over time. Some of that memory is used for the
screen buffer and by other system processes. Usually, no more than half of that memory is
left for your application to use, and it can be considerably less.

Although that may sound like it leaves a pretty decent amount of memory for such a small
computer, there is another factor to consider when it comes to memory on iPhone: modern
computer operating systems like Mac OS X will take chunks of memory that aren’t being
used and write them out to disk in something called a swap file, which allows applications
to keep running even when they have requested more memory than is actually available on
the computer. The iPhone OS, however, will not write volatile memory, such as application
data, out to a swap file. As a result, the amount of memory available to your application is
constrained by the amount of unused physical memory in the phone.

24594ch01.indd 7 6/24/09 4:20:22 PM

Download at Boykma.Com

CHAPTER 1: Welcome to the Jungle8

Cocoa Touch has built-in mechanisms for letting your application know that memory is get-
ting low. When that happens, your application must free up unneeded memory or risk being
forced to quit.

No Garbage Collection
We mentioned earlier that Cocoa Touch uses Objective-C 2.0, but one of the key new fea-
tures of that language is not available on iPhone: Cocoa Touch does not support garbage
collection.

Some New Stuff
Since we’ve mentioned that Cocoa Touch is missing some features that Cocoa has, it seems
only fair to mention that the iPhone SDK contains some new functionality that is not cur-
rently present in Cocoa or, at least, is not available on every Mac. The iPhone SDK provides
a way for your application to determine the phone’s current geographic coordinates using
Core Location. iPhone also has a built-in camera and photo library, and the SDK provides
mechanisms that allow your application to access both. iPhone also has a built-in accelerom-
eter that lets you detect how your iPhone is being held and moved.

A Different Approach
Two things iPhone doesn’t have are a physical keyboard and a mouse, which means you
have a fundamentally different way of interacting with the user than you do when program-
ming for a general-purpose computer. Fortunately, most of that interaction is handled for
you. If you add a text field to your application, iPhone knows to bring up a keyboard when
the user clicks in that field, for example, without you having to write any extra code.

What’s in This Book
Here is a very brief overview of the remaining chapters in this book.

Chapter 2
In this chapter, we’ll learn how to use Xcode’s partner in crime, Interface Builder, to create a
simple interface, placing some text on the iPhone screen.

Chapter 3
In Chapter 3, we’ll start interacting with the user, building a simple application that dynami-
cally updates displayed text at runtime based on buttons the user presses.

24594ch01.indd 8 6/24/09 4:20:22 PM

Download at Boykma.Com

CHAPTER 1: Welcome to the Jungle 9

Chapter 4
Chapter 4 will build on Chapter 3 by introducing you to several more of iPhone’s standard
user interface controls. We’ll also look at how to use alerts and sheets to prompt users to
make a decision or to inform them that something out of the ordinary has occurred.

Chapter 5
In Chapter 5, we’ll look at handling autorotation, the mechanism that allows iPhone applica-
tions to be used in both portrait and landscape modes.

Chapter 6
We’ll move into more advanced user interfaces in Chapter 6 and look at creating multiview
interfaces. We’ll change which view is being shown to the user at runtime, allowing you to
create more complex user interfaces.

Chapter 7
Toolbar controllers are one of the standard iPhone user interfaces; in Chapter 7, we’ll look at
how to implement this kind of interface.

Chapter 8
In Chapter 8, we’ll look at table views, the primary way of providing lists of data to the user
and the foundation of hierarchical navigation-based applications and also see how to let the
user search in your application data.

Chapter 9
One of the most common iPhone application interfaces is the hierarchical list that lets you
drill down to see more data or more details. In Chapter 9, you’ll see what’s involved in imple-
menting this standard type of interface.

Chapter 10
In Chapter 10, we’ll look at implementing application settings, which is iPhone’s mechanism
for letting users set their application-level preferences.

Chapter 11
Chapter 11 looks at data management on iPhone. We’ll talk about creating objects to hold
application data and see how that data can be persisted to iPhone’s file system. We’ll also see
the basics of using something called Core Data, which allows you to save and retrieve data
easily.

24594ch01.indd 9 6/24/09 4:20:22 PM

Download at Boykma.Com

CHAPTER 1: Welcome to the Jungle10

Chapter 12
Everybody loves to draw, so we’ll look at doing some custom drawing in Chapter 12, using
basic drawing functions in Quartz and OpenGL ES.

Chapter 13
iPhone’s multitouch screen can accept a wide variety of gestural inputs from the user. In
Chapter 13, you’ll learn all about detecting basic gestures such as the pinch and swipe. We’ll
also look at the process of defining new gestures and talk about when new gestures are
appropriate.

Chapter 14
iPhone is capable of determining its latitude and longitude thanks to Core Location. We’ll
build some code that makes use of Core Location to figure out where in the world your
iPhone is and use that information in our quest for world dominance.

Chapter 15
In Chapter 15, we’ll look at interfacing with iPhone’s accelerometer, which is how your
iPhone knows which way it’s being held. We’ll look at some of the fun things your applica-
tion can do with that information.

Chapter 16
Each iPhone has a camera and a library of pictures, both of which are available to your appli-
cation, if you ask nicely! In Chapter 16, we’ll show you how to ask nicely.

Chapter 17
iPhone is currently available in 80 countries. In Chapter 17, we’ll show you how to write your
applications in such a way that all parts of your application can be easily translated into
other languages to expand the potential audience for your applications.

Chapter 18
At this point in the book, you’ll have mastered the fundamental building blocks for creating
iPhone applications. But where do you go from here? In Chapter 18, we’ll explore the logical
next steps for you to take on your journey to master the iPhone SDK.

24594ch01.indd 10 6/24/09 4:20:22 PM

Download at Boykma.Com

CHAPTER 1: Welcome to the Jungle 11

What’s New in This Update?
Since the first edition of this book hit the bookstores, lots has been happening in the iPhone
development universe. The growth of the iPhone development community has been phe-
nomenal. The SDK has continually evolved, with Apple releasing a steady stream of updates
to SDK 2. In March 2009, Apple announced a major release, SDK 3.0. Apple’s iPhone team
sure has been busy.

Well, we’ve been busy, too! The second we found out about SDK 3.0, we immediately went to
work, updating every single project to ensure not only that the code for each one compiles
under the new version of the SDK but also that each one takes advantage of the latest and
greatest features offered by Cocoa Touch. We reshot a boatload of screenshots; tweaked the
prose throughout the book; and, in Chapter 11, added a brief introduction to Core Data, one
of the most exciting new parts of iPhone SDK 3.

Are You Ready?
iPhone is an incredible computing platform and an exciting new frontier for your develop-
ment pleasure. Programming your iPhone is going to be a new experience, different from
that of any platform you’ve worked with before. For everything that looks familiar, there will
be something alien, but as you work through the book’s code, the concepts should all come
together and start to make sense.

You should keep in mind that the exercises in this book are not simply a checklist that, when
completed, magically grants you iPhone developer guru status. Make sure you understand
what you did, and why, before moving on to the next project. Don’t be afraid to make
changes to the code; experimenting and observing the results is one of the best ways you
can wrap your head around the complexities of coding in an environment like Cocoa Touch.

That said, if you’ve got your iPhone SDK installed, turn the page. If not, get to it! Got it? Good.
Then let’s go!

24594ch01.indd 11 6/24/09 4:20:22 PM

Download at Boykma.Com

24594ch01.indd 12 6/24/09 4:20:22 PM

Download at Boykma.Com

Chapter 2

13

a
Appeasing the
Tiki Gods

s you’re probably well aware, it has become something of a tradition to call
the first project in any book on programming “Hello, World!” We considered
breaking this tradition but were scared that the tiki gods would inflict some
painful retribution on us for such a gross breach of etiquette. So, let’s do it by
the book, shall we?

In this chapter, we’re going use Xcode and Interface Builder to create a small
iPhone application to display the text “Hello, World!” on its screen. We’ll look
at what’s involved in creating an iPhone application project in Xcode, work
through the specifics of using Interface Builder to design our application’s user
interface, and then run our application on the iPhone simulator. After that,
we’ll give our application an icon and a unique identifier to make it feel more
like a real iPhone application.

We’ve got a lot to do here, so let’s get going.

Setting Up Your Project in Xcode
By now, you should have Xcode and the iPhone SDK installed on your
machine. You should also download the book projects archive from the book
web site. Here’s a link:

http://www.iphonedevbook.com/forum/

The book forums are a great place to download the latest book source code,
get your questions answered, and meet up with like-minded people.

24594ch02.indd 13 6/23/09 10:27:34 AM

Download at Boykma.Com

http://www.iphonedevbook.com/forum/

CHAPTER 2: Appeasing the Tiki Gods14

As to the book project archive, even though you have the complete set of project files at
your disposal, we think you’ll get more out of the book if you create each project by hand
instead of simply running the version you downloaded. The biggest reason for this is the
familiarity and expertise you’ll gain in working with the various tools we use throughout
the book if you roll your own projects. There’s just no substitute for actually clicking and
dragging out buttons and sliders and scrolling through source code to make changes as we
move from one version of a program to another.

That said, our first project is in the 02 Hello World folder. If you’ll be creating your own proj-
ects, create a new 02 Hello World folder and follow along.

Launch Xcode, which is located in /Developer/Applications. If this is your first time using
Xcode, don’t worry; we’ll walk you through the process of creating a new project. If you’re
already an old hand, just skim ahead.

When you first launch Xcode, you’ll be presented with a welcome screen like the one shown
in Figure 2-1. The welcome screen contains useful links to iPhone and Mac OS X technical
documentation, tutorial videos, news, sample code, and lots more. All of this information
is available on Apple’s developer web site and within Xcode’s documentation browser, so
if you’d rather not see this screen in the future, just uncheck the Show at launch checkbox
before closing it. If you feel like poking through the information here for a few minutes, by
all means, go right ahead. When you’re done, close the window, and we’ll proceed.

Figure 2-1. The Xcode welcome screen

24594ch02.indd 14 6/23/09 10:27:34 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 15

NOTE
If you have an iPhone or iPod touch connected to your machine, you might see a message when you first
launch Xcode asking whether you want to use that device for development. Alternatively, a window titled
Organizer, designed to list the devices you’ll be working with, might appear. For now, click the Ignore
button or, in the case of the Organizer window, close the window. If you choose to join the paid iPhone
Developer Program, you will gain access to a program portal that will tell you how to use your iPhone or
iPod touch for development and testing.

Create a new project by selecting New Project... from the File menu, or by pressing ⇧⌘N,
which will bring up the New Project assistant (see Figure 2-2).

Figure 2-2. The New Project assistant, which lets you select from various file
templates when creating a new file

As you can see in Figure 2-2, the pane on the left side of the window is divided into two
main sections: iPhone OS and Mac OS X. You’ll notice that there are a number of project
 template categories available for Mac OS X, but only one category (at least at the time of
this writing) for the iPhone: Application.

As we did in Figure 2-2, select Application from under the iPhone heading, and you’ll be
shown a number of icons in the upper-right pane, each of which represents a separate
project template that can be used as a starting point for your iPhone applications. The icon

24594ch02.indd 15 6/23/09 10:27:34 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods16

labeled View-based Application is the simplest template and the one we’ll be using for the
first several chapters. The others provide you with additional code and/or resources needed
to create common iPhone application interfaces and contain stuff we’re not ready to look at
yet, but don’t worry, we’ll get to them later.

For this first project, click the View-based Application icon (that icon is selected in Figure 2-2)
and then click the button labeled Choose.

Once you’ve selected your project template, you’ll be asked to save your new project using
the standard save sheet (see Figure 2-3). Type Hello World for the project name, and save it
wherever you want it stored. The Document folder is not a bad place, but you might want to
create a dedicated folder for your Xcode projects.

Figure 2-3. Selecting the name and location for your project

The Xcode Project Window
After you dismiss the save sheet, Xcode will create and then open your project, and a new
project window will appear that looks like Figure 2-4. We find that the project window, when
first created, is a little small for our tastes, so we usually expand the window to take up more
of the screen. There’s a lot of information crammed into this window, and it’s where you will
be spending a lot of your iPhone development time.

24594ch02.indd 16 6/23/09 10:27:34 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 17

Figure 2-4. The Hello World project in Xcode

Your project window features a toolbar across the top, which gives you ready access to a lot
of commonly used commands. Below the toolbar, the window is divided into three main
sections, or panes.

The pane that runs down the left side of the window is called the Groups & Files pane. All of
the resources that make up your project are grouped here, as are a number of relevant proj-
ect settings. Just as in the Finder, clicking the little triangle to the left of an item expands that
item to show available subitems. Click the triangle again to hide the subitems.

The top-right pane is called the Detail View (or just Detail pane) and shows you detailed
information about items selected in the Groups & Files pane. The lower-right pane is called
the Editor pane. If you select a single file in either the Groups & Files or Detail pane and Xcode
knows how to display that kind of file, the contents of the file will be displayed in the Editor
pane. Editable files, such as source code, can also be edited here. In fact, this is where you
will be writing and editing your application’s source code.

Now that we have the terminology out of the way, take a look at the Groups & Files pane. The
first item in the list should bear the same name as your project, in this case, Hello World. This
item is the gathering point for the source code and the other resources specific to your proj-
ect. For the time being, don’t worry about the items in the Groups & Files pane except those
under Hello World.

24594ch02.indd 17 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods18

Take a look at Figure 2-4. Note that the disclosure triangle to the left of Hello World is open,
and there are five subfolders: Classes, Other Sources, Resources, Frameworks, and Products.
Let’s briefly talk about what each subfolder is used for:

Classes is where you will spend much of your time. This is where most of the code
that you write will go, since this is where all Objective-C classes rightfully belong.
You are free to create subfolders under the Classes folder to help organize your code.
We’ll be using this folder starting in the next chapter.

Other Sources contains source code files that aren’t Objective-C classes. Typically, you
won’t spend a lot of time in the Other Sources folder. When you create a new iPhone
application project, there are two files in this folder:

Hello_World_Prefix.pch: The extension .pch stands for “precompiled header.” This
is a list of header files from external frameworks that are used by our project.
Xcode will precompile the headers contained in this file, which will reduce the
amount of time it takes to compile your project whenever you select Build or
Build and Go. It will be a while before you have to worry about this, because the
most commonly used header files are already included for you.

main.m: This is where your application’s main() method is. You normally won’t
need to edit or change this file.

Resources contains noncode files that will be included as part of your application.
This is where you will include files such as your application’s icon image and other
images, sound files, movie files, text files, or property lists that your program may
need while it’s running. Remember, since your application runs in its own sandbox,
you will have to include any files you need here, because you won’t be able to access
files located elsewhere on the iPhone except through sanctioned APIs, such as the
ones that provide access to the iPhone’s photo library and address book. There
should be three items in this folder:

Hello_WorldViewController.xib: This file contains information used by the program
Interface Builder, which we’ll take for a spin a bit later in this chapter.

MainWindow.xib: This is your application’s main Interface Builder (or “nib”) file.
In a simple application like the one we’re building in this chapter, there’s often
no need to touch this file. In later chapters, when we design more complex inter-
faces, we will work with this file and look at it in more depth.

Hello_World-Info.plist: This is a property list that contains information about our
application. We’ll look at this file a little bit later in the chapter too.

24594ch02.indd 18 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 19

Frameworks are a special kind of library that can contain code as well as resources
such as image and sound files. Any framework or library that you add to this folder
will be linked in to your application, and your code will be able to use objects, func-
tions, and resources contained in that framework or library. The most commonly
needed frameworks and libraries are linked in to our project by default, so most
of the time, we will not need to do anything with this folder. Less commonly used
libraries and frameworks, however, are not included by default, and you will see how
to link to them into an application later in this book.

Products contains the application that this project produces when it is compiled. If
you expand Products, you’ll see an item called Hello World.app. This is the applica-
tion that this particular project creates. Hello World.app is this project’s only product.
Right now, Hello World.app is listed in red, which means that the file cannot be found,
which makes sense, since we haven’t compiled our project yet! Highlighting a file’s
name in red is Xcode’s way of telling us that it can’t find the underlying physical file.

NOTE
The “folders” in the Groups & Files pane do not necessarily correspond to folders in your Mac’s file system.
These are logical groupings within Xcode to help you keep everything organized and to make it faster and
easier to find what you’re looking for while working on your application. If you look into your project’s
folder on your hard drive, you’ll notice that while there is a Classes folder, there is no folder called Other
Sources or Resources. Often, the items contained in those two project folders are stored right in the proj-
ect’s root directory, but you can store them anywhere, even outside of your project folder if you want. The
hierarchy inside Xcode is completely independent of the file system hierarchy. Moving a file out of the
Classes folder in Xcode, for example, will not change the file’s location on your hard drive.

Introducing Interface Builder
Now that you’re familiar with the basics of Xcode, let’s take a look at the other half of the
dynamic duo used in iPhone software development: Interface Builder, commonly referred to
as IB.

In your project window’s Groups & Files list, expand the Resources group, and then double-
click the file Hello_WorldViewController.xib. This will open that file in Interface Builder. If this is
your first time using Interface Builder, a window grouping similar to that shown in Figure 2-5
should appear. If you’ve used Interface Builder before, the windows will be where you left
them the last time you used it.

24594ch02.indd 19 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods20

Figure 2-5. Hello_WorldViewController.xib in Interface Builder

NOTE
Interface Builder has a long history; it has been around since 1988 and has been used to develop applica-
tions for NextSTEP, OpenSTEP, Mac OS X, and now iPhone. Interface Builder supports two file types: an
older format that uses the extension .nib and a newer format that utilizes the extension .xib. The iPhone
project templates all use .xib files by default, but until very recently, all Interface Builder files had the
extension .nib, and as a result, most developers took to calling Interface Builder files nib files. Interface
Builder files are commonly called nib files regardless of whether the extension actually used for the file is
.xib or .nib. In fact, Apple actually uses the terms nib and nib file throughout its documentation.

The window labeled Hello_WorldViewController.xib (the upper-left window in Figure 2-5) is
the nib’s main window. It is your home base and starting point in this particular nib file. With
the exception of the first two icons (File’s Owner and First Responder), every icon in this win-
dow represents a single instance of an Objective-C class that will be created automatically
for you when this nib file is loaded.

24594ch02.indd 20 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 21

Want to create an instance of a button? You could, of course, create the button by writing
code. But more commonly, you will use Interface Builder to create the button and specify its
attributes (shape, size, label, etc.).

The Hello_WorldViewController.xib file we are looking at right now gets loaded automatically
when your application launches—for the moment, don’t worry about how—so it is an excel-
lent place to create the objects that make up your user interface.

For example, to add a button to your application, you’ll need to instantiate an object of type
UIButton. You can do this in code by typing a line like this:

UIButton *myButton = [[UIButton alloc] initWithFrame:aRect];

In Interface Builder, you can accomplish the same exact thing by dragging a button from a
palette of interface objects onto your application’s main window. Interface Builder makes it
easy to set the button’s attributes, and since the button will be saved in the nib file, the but-
ton will be automatically instantiated when your application starts up. You’ll see how this
works in a minute.

What’s in the Nib File?
Take a look at Figure 2-5. As we mentioned earlier, the window labeled Hello_WorldViewCon-
troller.xib (the upper-left window) is the nib file’s main window. Every nib file starts off with
the same two icons, File’s Owner and First Responder. They are created automatically and can-
not be deleted. From that, you can probably guess that they are important, and they are.

File’s Owner will always be the first icon in any nib file and represents the object that loaded
the nib file from disk. In other words, File’s Owner is the object that “owns” this copy of the
nib file. If this is a bit confusing, don’t worry; it’s not important at the moment. When it does
become important later, we’ll go over it again.

The second icon in this and any other nib file is called First Responder. We’ll talk more about
responders later in the book, but in very basic terms, the first responder is the object with
which the user is currently interacting. If, for example, the user is currently entering data
into a text field, that field is the current first responder. The first responder changes as the
user interacts with the interface, and the First Responder icon gives you a convenient way to
communicate with whatever control or view is the current first responder without having
to write code to determine which control or view that might be. Again, we’ll talk about this
much more later, so don’t worry if this concept is a bit fuzzy right now.

Every other icon in this window, other than these first two special cases, represents an object
instance that will be created when the nib file loads. In our case, as you can see in Figure 2-5,
there is a third icon called View.

24594ch02.indd 21 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods22

The View icon represents an instance of the UIView class. A UIView object is an area that a
user can see and interact with. In this application, we will have only one view, so this icon
represents everything that the user can see in our application. Later, we’ll build more com-
plex applications that have more than one view, but for now, just think of this as what the
users can see when they’re using your application.

NOTE
Technically speaking, our application will actually have
more than one view. All user interface elements that
can be displayed on the screen, including buttons, text
fields, and labels, are all subclasses of UIView. When
you see the term view used in this book, however, we
will generally be referring only to actual instances of
UIView, and this application has only one of those.

If you go back to Figure 2-5, you’ll notice two other
windows open besides the main window. Look at
the window that has the word View in the title bar.
That window is the graphical representation of that
third icon in the nib’s main window. If you close
this window and then double-click the View icon in
the nib file’s main window, this window will open
again. This is where you can design your user inter-
face graphically. Let’s do that now.

Adding a Label to the View
The rightmost window shown in Figure 2-5 is
the library, which you can see in more detail in
Figure 2-6. This is where you will find all the stock
Cocoa Touch objects that Interface Builder sup-
ports. Dragging an item from the library to a nib file
window will add an instance of that class to your
application. If you close the library window, you
can get it to reappear by selecting Tools Library
or by pressing ⇧L⌘. The items on this palette are
primarily from the iPhone UIKit, which is a frame-
work of objects used to create an application’s user
interface.

Figure 2-6. The Library palette, where
you’ll find stock objects from the UIKit
that are available for use in Interface
Builder

24594ch02.indd 22 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 23

UIKit fulfills the same role in Cocoa Touch as AppKit does in Cocoa. The two frameworks are
similar conceptually, but because of differences in the platforms, there are obviously many
differences between them. On the other hand, the Foundation framework classes, such as
NSString and NSArray, are shared between Cocoa and Cocoa Touch.

Scroll through the list of objects in the library until
you find one called Label (see Figure 2-7).

A label represents a bit of text that can be dis-
played on the iPhone’s screen but can’t be directly
edited by the user. In a moment, we’re going to
add a label to our view.

Because user interface objects are hierarchical,
we’ll be adding our label as a subview to our main
view (the view named View). Interface Builder is
smart. If an object does not accept subviews, you
will not be able to drag other objects onto it.

Dragging a label from the library to the view called
View will add an instance of UILabel as a subview
of our application’s main view. Got that?

TIP
Having trouble finding the Label in that long list of
library objects? No problem! Click in the search field
at the bottom of the library (or, as a shortcut, press
⇧L⌘L to get there), and type the word label. As you
type, the list of objects is reduced to match your search
term. Be sure to empty the search window when you
are done so you can see the full list again.

Drag a Label from the library into the View
 window. The view should look something like
 Figure 2-8 when you’re done.

Let’s edit the label so it says something profound.
Double-click the label you just created, and type
the text Hello, World!. Next, drag the label to wher-
ever you want it to appear on the screen.

Figure 2-7. Label object in the Library
palette

Figure 2-8. Adding a label to your appli-
cation’s View window

24594ch02.indd 23 6/23/09 10:27:35 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods24

Guess what? Once we save, we’re finished. Select File Save, and go back to Xcode so we
can build and run our application.

In Xcode, select Build Build and Run (or press ⌘R).
Xcode will compile our application and launch it in the
iPhone simulator, as shown in Figure 2.9.

When you are finished admiring your handiwork, be sure
to quit the simulator. Xcode, Interface Builder, and the
simulator are all separate applications.

CAUTION
If your iPhone is connected to your Mac when you build and run,
things might not go quite as planned. In a nutshell, in order to
be able to build and run your applications on your iPhone, you
have to sign up and pay for one of Apple’s iPhone developer
programs and then go through the process of configuring Xcode
appropriately. When you join the program, Apple will send you
the information you’ll need to get this done. In the meantime,
most of the programs in this book will run just fine using the
iPhone simulator. If your iPhone is plugged in, before you select
Build and Run, select Project Set Active SDK
Simulator—iPhone OS 3.0.

Wait a second! That’s it? But, we didn’t write any code.

That’s right. Pretty neat, huh?

But what if we had wanted to change some of the properties of the label, like the text size or
color? We’d have to write code to do that, right?

Nope.

Head back to Interface Builder and single-click the Hello World label so that it is selected.
Now press ⌘1 or select Tools Inspector. This will open a window called the inspector,
where you can set the attributes of the currently selected item (see Figure 2-10).

From the inspector, you can change things like the font size, color, and drop shadow—just
lots of stuff. The inspector is context sensitive. If you select a text field, you will be shown the
editable attributes of a text field. If you select a button, you will be shown the editable attri-
butes of a button, and so on.

Figure 2-9. Here’s the Hello
World program in its full iPhone
glory!

24594ch02.indd 24 6/23/09 10:27:36 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 25

Go ahead and change the label’s appearance to your
heart’s delight, and then save, go back to Xcode, and
select Build and Run again. The changes you made
should show up in your application, once again
without writing any code. By letting you design your
interface graphically, Interface Builder frees you up
to spend time writing the code that is specific to your
application instead of spending time writing tedious
code to construct your user interface.

NOTE
Most modern application development environments
have some tool that lets you build your user interface
graphically. One distinction between Interface Builder
and many of these other tools is that Interface Builder
does not generate any code that has to be maintained.
Instead, Interface Builder creates Objective-C objects, just
as you would do in code, and then serializes those objects
into the nib file so that they can be loaded directly into
memory at runtime. This avoids many of the problems
associated with code generation and is, overall, a more
powerful approach.

Some iPhone Polish—
Finishing Touches
Before we leave this chapter, let’s just put a last little
bit of spit and polish on our application to make it feel
a little more like an authentic iPhone application. First, run your project. When the simulator
window appears, click the iPhone’s home button, the black button with the white square
at the very bottom of the window. That will bring you back to the iPhone home screen (see
 Figure 2-11). Notice anything a bit, well, boring?

Take a look at the Hello World icon at the top of the screen. Yeah, that icon will never do,
will it? To fix it, you need to create an icon and save it as a portable network graphic (.png)
file. It needs to be 57 57 pixels in size. Do not try to match the style of the buttons that are
already on the phone; your iPhone will automatically round the edges and give it that nice

Figure 2-10. The inspector showing
our label’s attributes

24594ch02.indd 25 6/23/09 10:27:36 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods26

glassy appearance. Just create a normal flat, square image.
We have provided an icon image in the project’s archive
(within the 02 Hello World folder) that you can use if you
don’t want to create your own.

NOTE
For your application’s icon, you have to use a .png image, but
you should actually use this format for all images you add to
your iPhone projects. Even though most common image formats
will display correctly, you should use .png files unless you have
a compelling reason to use another format. Xcode automatically
optimizes .png images at build time to make them the fastest
and most efficient image type for use in iPhone applications.

After you’ve designed your application icon, drag the
.png file from the Finder to the Resources folder in Xcode,
as shown in Figure 2-12, or select the Resources folder in
Xcode, choose Project Add to Project..., and navigate to
your icon image file.

Figure 2-12. Dragging an icon file into the Resources folder of your Xcode project

Figure 2-11. That leftmost
application icon is just plain
boring.

24594ch02.indd 26 6/23/09 10:27:36 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 27

Once you’ve done this, Xcode will prompt you for some specifics (see Figure 2-13). You can
choose to have Xcode copy the file into your project directory, or you can just add it to your
project as a reference to the original file. Generally, it’s a good idea to copy resources into
your Xcode project unless the file is shared with other projects.

Figure 2-13. Selecting how to add the file to the project

When you add any common kind of file to your project, Xcode knows what to do with it, and
as a result, this image file will now get compiled into our application automatically without
doing anything further.

What we’ve done so far is incorporate the icon.png image into the project, which will result
in the image getting built into our application bundle. The next thing we need to do is to
specify that this particular image should be used as our application’s icon.

In your Xcode project window’s Groups & Files pane, expand the Resources folder, if it isn’t
already, and then single-click the Hello_World-Info.plist file. This is a property list file that
contains some general information about our application including, among other things,
the name of the icon file.

When you select Hello_World-Info.plist, the property list will appear in the editing pane (see
Figure 2-14). Within the property list, find a row with the label Icon file in the left column. The
corresponding right column in that same row should be empty. Double-click the empty cell,
and type in the name of the .png file you just added to your project.

24594ch02.indd 27 6/23/09 10:27:36 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods28

NOTE
If you ignored the Icon file entry in the plist, your icon will likely show up anyway. Huh? Why’s that? By
default, if no icon file name is provided, the SDK looks for a resource named icon.png and uses that. Just
thought you’d like to know!

Figure 2-14. Specifying the icon file

Ready to Compile and Run
Before we compile and run, take a look at the other rows in Hello_World-Info.plist. While most
of these settings are fine as they are, one in particular requires our attention, the setting
named Bundle identifier. This is a unique identifier for your application and should always be
set. If you’re just going to run your application on the iPhone simulator, the standard naming
convention for bundle identifiers is to use one of the top-level Internet domains such as com
or org followed by a period, then the name of your company or organization followed by
another period, and finally the name of your application. If you want to run your application
on an actual iPhone, creating your application’s bundle identifier is a little more involved
process that you can read about in the iPhone Program Portal if you choose to pay to join
the iPhone SDK Program. Since we’re here, why don’t we double-click the word yourcompany
in the existing bundle identifier and change that to apress. The value at the end of the string
is a special code that will get replaced with your application’s name when your application is
built. This allows you to tie your application’s bundle identifier to its name.

Once that change is made, compile and run. When the simulator has finished launching,
press the button with the white square to go home, and check out your snazzy new icon.
Ours is shown in Figure 2-15.

24594ch02.indd 28 6/23/09 10:27:36 AM

Download at Boykma.Com

CHAPTER 2: Appeasing the Tiki Gods 29

NOTE
If you want to clear out old applications from the
iPhone simulator’s home screen, you can simply delete
the folder called iPhone Simulator from the Applica-
tion Support folder contained in your home directory’s
Library folder.

Bring It on Home
Pat yourself on the back. Although it may not seem like
you accomplished all that much in this chapter, we actu-
ally covered a lot of ground. You learned about the iPhone
project templates, created an application, saw how to use
Interface Builder, and learned how to set your application
icon and bundle identifier.

Hello World, however, is a strictly one-way application: we
show some information to the user, but we never get any
input from them. When you’re ready to see how we go about getting input from the user of
an iPhone and taking actions based on that input, take a deep breath and turn the page.

Figure 2-15. Your application
now has a snazzy icon!

24594ch02.indd 29 6/23/09 10:27:36 AM

Download at Boykma.Com

24594ch02.indd 30 6/23/09 10:27:36 AM

Download at Boykma.Com

Chapter 3

31

o
Handling Basic
Interaction

ur Hello World application was a good introduction to iPhone development
using Cocoa Touch, but it was missing a crucial capability: the ability to inter-
act with the user. Without that, our application is severely limited in terms of
what it can accomplish.

In this chapter, we’re going to write a slightly
more complex application, one with two
buttons as well as a label (see Figure 3-1).
When the user taps either of the buttons,
the label’s text changes. This may seem
like a rather simplistic example, but it dem-
onstrates the key concepts you’ll need to
master the use of controls in your iPhone
applications.

The Model-View-
Controller Paradigm
Before diving in, a tiny bit of theory is in
order. The designers of Cocoa Touch were
guided by a concept called Model-View-
Controller (or MVC), which is a very logical
way of dividing up the code that makes up
a GUI-based application. These days, almost

Figure 3-1. The simple two-
button application we will be
building in this chapter

24594ch03.indd 31 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction32

all object-oriented frameworks pay a certain amount of homage to MVC, but few are as true
to the MVC model as Cocoa Touch.

The MVC model divides up all functionality into three distinct categories:

Model: The classes that hold your application’s data

View: Made up of the windows, controls, and other elements that the user can see
and interact with

Controller: Binds the model and view together and is the application logic that
decides how to handle the user’s inputs

The goal in MVC is to make the objects that implement these three types of code as dis-
tinct from one another as possible. Any object you write should be readily identifiable as
belonging in one of the three categories, with little or no functionality within it that could be
classified within either of the other two. An object that implements a button, for example,
shouldn’t contain code to process data when that button is tapped, and code that imple-
ments a bank account shouldn’t contain code to draw a table to display its transactions.

MVC helps ensure maximum reusability. A class that implements a generic button can be
used in any application. A class that implements a button that does some particular calcula-
tion when it is clicked can be used only in the application for which it was originally written.

When you write Cocoa Touch applications, you will primarily create your view components
using Interface Builder, although you will sometimes also modify your interface from code,
or you might subclass existing views and controls.

Your model will be created by crafting Objective-C classes designed to hold your applica-
tion’s data or by building a data model using Core Data, which you’ll learn about in Chapter
11. We won’t be creating any model objects in this chapter’s application because we have no
need to store or preserve data, but we will introduce model objects as our applications get
more complex in future chapters.

Your controller component will typically be composed of classes that you create and that are
specific to your application. Controllers can be completely custom classes (NSObject sub-
classes), but more often, they will be subclasses of one of several existing generic controller
classes from the UIKit framework such as UIViewController, which you’ll see in a moment.
By subclassing one of these existing classes, you will get a lot of functionality for free and
won’t have to spend time recoding the wheel, so to speak.

As we get deeper into Cocoa Touch, you will quickly start to see how the classes of the UIKit
framework follow the principles of MVC. If you keep this concept in the back of your head as
you develop, you will end up creating cleaner, more easily maintained code.

24594ch03.indd 32 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 33

Creating Our Project
It’s time to create our Xcode project. We’re going to use the same template that we used in
the previous chapter: View-based Application. We’ll start using some of the other templates
before too long, but by starting with the simple template again, it’ll be easier for you to see
how the view and controller objects work together in an iPhone application. Go ahead and
create your project, saving it under the name Button Fun. If you have any trouble creating
your project, refer to the preceding chapter for the proper steps.

You probably remember that the project template created some classes for us. You’ll find
those same classes in your new project, although the names will be a little different because
some class names are based on the project name.

Creating the View Controller
A little later in this chapter, we’re going to design a view (or user interface) for our applica-
tion using Interface Builder, just as we did in the previous chapter. Before we do that, we’re
going to look at and make some changes to the source code files that were created for us.
Yes, Virginia, we’re actually going to write some code in this chapter.

Before we make any changes, let’s look at the files that
were created for us. In the project window, expand
the Classes folder to reveal the four files within (see
Figure 3-2).

These four files implement two classes, each of which
contains a .m and .h file. The application we are creat-
ing in this chapter has only one view, and the controller
class that is responsible for managing that one view is
called Button_FunViewController. The Button_Fun
part of the name comes from our project name, and
the ViewController part of the name means this class is, well, a view controller. Click
 Button_FunViewController.h in the Groups & Files pane, and take a look at the contents of
the file:

#import <UIKit/UIKit.h>

@interface Button_FunViewController : UIViewController {
}

@end

Figure 3-2. The class files that
were created for us by the project
template

24594ch03.indd 33 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction34

Not much to it, is there? This is a subclass of UIViewController, which is one of those
generic controller classes we mentioned earlier. It is part of the UIKit and gives us a bunch
of functionality for free. Xcode doesn’t know what our application-specific functionality is
going to be, but it does know we’re going to have some, so it has created this class to hold
that functionality.

Take a look back at Figure 3-1. Our program consists of two buttons and a text label that
reflects which button was tapped. We’ll create all three of these elements in Interface
Builder. Since we’re also going to be writing code, there must be some way for our code to
interact with the elements we create in Interface Builder, right?

Absolutely right. Our controller class can refer to objects in the nib by using a special kind
of instance variable called an outlet. Think of an outlet as a pointer that points to an object
within the nib. For example, suppose you created a text label in Interface Builder and wanted
to change the label’s text from within your code. By declaring an outlet and connecting that
outlet to the label object, you could use the outlet from within your code to change the text
displayed by the label. You’ll see how to do just that in a bit.

Going in the opposite direction, interface objects in our nib file can be set up to trigger spe-
cial methods in our controller class. These special methods are known as action methods.
For example, you can tell Interface Builder that when the user touches up (pulls a finger off
the screen) within a button, a specific action method within your code should be called.

As we’ve already said, Button Fun will feature two buttons and a label.

In our code, we’ll create an outlet that points to the label, and this outlet will allow us to
change the text of that label. We’ll also create a method named buttonPressed: that will
fire whenever one of the two buttons is tapped. buttonPressed: will set the label’s text to
let the user know which button was tapped.

We’ll use Interface Builder to create the buttons and label, and then we’ll do some
clicking and dragging to connect the label to our label outlet and our buttons to our
 buttonPressed: action.

But before we get to our code, here’s a bit more detail on outlets and actions.

Outlets
Outlets are instance variables that are declared using the keyword IBOutlet. A declaration
of an outlet in your controller’s header file might look like this:

@property (nonatomic, retain) IBOutlet UIButton *myButton;

24594ch03.indd 34 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 35

The IBOutlet keyword is defined like this:

#ifndef IBOutlet
#define IBOutlet
#endif

Confused? IBOutlet does absolutely nothing as far as the compiler is concerned. Its sole
purpose is to act as a hint to tell Interface Builder that this is an instance variable that we’re
going to connect to an object in a nib. Any instance variable that you create and want to
connect to an object in a nib file must be preceded by the IBOutlet keyword. When you
open Interface Builder, it will scan your project header files for occurrences of this keyword
and will allow you to make connections from your code to the nib based on these (and only
these) variables. In a few minutes, you’ll see how to actually make the connection between
an outlet and a user interface object in Interface Builder.

OUTLET CHANGES
In the first version of the book, we placed the IBOutlet keyword before the instance variable declaration,
like this:

IBOutlet UIButton *myButton;

Since that time, Apple’s sample code has been moving toward placing the IBOutlet keyword in the prop-
erty declaration, like this:

@property (nonatomic, retain) IBOutlet UIButton *myButton;

Both mechanisms are supported, and for the most part, there is no difference in the way things work based
on where you put the keyword. There is one exception to that, however. If you declare a property with a
different name than its underlying instance variable (which can be done in the @synthesize directive),
then you have to put the IBOutlet keyword in the property declaration, and not before the instance vari-
able declaration, in order for it to work correctly. If you are a bit fuzzy on the property concept, we’ll talk you
through it in just a bit.

 Although both approaches work, we’ve followed Apple’s lead and have moved the IBOutlet keyword to
the property declaration in all of our code.

You can read more about the new Objective-C properties in the second edition of Learn Objective-C on the Mac,
by Mark Dalrymple and Scott Knaster (Apress 2008), and in The Objective-C 2.0 Programming Language avail-
able from Apple’s developer web site:

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/

ObjC.pdf

24594ch03.indd 35 6/23/09 10:34:51 AM

Download at Boykma.Com

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/

CHAPTER 3: Handling Basic Interaction36

Actions
Actions are methods that are part of your controller class. They are also declared with a spe-
cial keyword, IBAction, which tells Interface Builder that this method is an action and can
be triggered by a control. Typically, the declaration for an action method will look like this:

- (IBAction)doSomething:(id)sender;

The actual name of the method can be anything you want, but it must have a return type of
IBAction, which is the same as declaring a return type of void. This is another way of saying
that action methods do not return a value. Usually, the action method will take one argu-
ment, and it’s typically defined as id and given a name of sender. The control that triggers
your action will use the sender argument to pass a reference to itself. So, for example, if your
action method was called as the result of a button tap, the argument sender would contain
a reference to the specific button that was tapped.

As you’ll see in a bit, our program will use that sender argument to set the label to the text
“left” or “right,” depending on which button was tapped. If you don’t need to know which
control called your method, you can also define action methods without a sender param-
eter. This would look like so:

- (IBAction)doSomething;

It won’t hurt anything if you declare an action method with a sender argument and then
ignore sender. You will likely see a lot of sample code that does just that, because histori-
cally action methods in Cocoa had to accept sender whether they used it or not.

Adding Actions and Outlets to the View Controller
Now that you know what outlets and actions are, let’s go ahead and add one of each to
our controller class. We need an outlet so we can change the label’s text. Since we won’t be
changing the buttons, we don’t need an outlet for them.

We’ll also declare a single action method that will be called by both buttons. While many
action methods are specific to a single control, it’s possible to use a single action to handle
input from multiple controls, which is what we’re going to do here. Our action will grab the
button’s name from its sender argument and use the label outlet to embed that button
name in the label’s text. You’ll see how this is done in a moment.

24594ch03.indd 36 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 37

NOTE
Because Xcode creates files for us to use that already contain some of the code we need, we will
often be inserting code into an existing file. When you see code listings like the one for Button_
FunViewController.h, any code that is in a normal typeface is existing code that should already
be in the file. Code that is listed in bold is new code that you need to type.

Go ahead and add the following code to Button_FunViewController.h:

#import <UIKit/UIKit.h>

@interface Button_FunViewController : UIViewController {
 UILabel *statusText;
}
@property (nonatomic, retain) IBOutlet UILabel *statusText;
- (IBAction)buttonPressed:(id)sender;
@end

If you have worked with Objective-C 2.0, you’re probably familiar with the @property
declaration, but if you aren’t, that line of code might look a little intimidating. Fear not:
Objective-C properties are really quite simple. Let’s take a quick detour to talk about them,
since they are relatively new and we will use them extensively in this book. Even if you are
already a master of the property, please do read on, because there is a bit of Cocoa Touch–
specific information that you’ll definitely find useful.

Objective-C Properties
Before the property was added to Objective-C, programmers traditionally defined pairs of
methods to set and retrieve the values for each of a class’s instance variables. These methods
are called accessors and mutators (or, if you prefer, getters and setters) and might look
something like this:

- (id) foo {
 return foo;
}
- (void) setFoo: (id) aFoo {
 if (aFoo != foo) {
 [aFoo retain];
 [foo release];
 foo = aFoo;
 }
}

24594ch03.indd 37 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction38

Although this approach is still perfectly valid, the @property declaration allows you to say
goodbye to the tedious process of creating accessor and mutator methods, if you want. The
@property declarations we just typed, combined with another declaration in the imple-
mentation file (@synthesize), which you’ll see in a moment, will tell the compiler to create
the getter and setter methods at compile time. You do still have to declare the underlying
instance variables as we did here, but you do not need to define the accessor or mutator.

In our declaration, the @property keyword is followed by some optional attributes, wrapped
in parentheses. These further define how the accessors and mutators will be created by the
compiler. The two you see here will be used often when defining properties in iPhone appli-
cations:

@property (nonatomic, retain) UILabel *statusText;

The first of these attributes, retain, tells the compiler to send a retain message to any object
that we assign to this property. This will keep the instance variable underlying our property
from being flushed from memory while we’re still using it. This is necessary because the
default behavior (assign) is intended for use with garbage collection, a feature of Objective-
C 2.0 that isn’t currently available on iPhone. As a result, if you define a property that is an
object (as opposed to a raw datatype like int), you should generally specify retain in the
optional attributes. When declaring a property for an int, float, or other raw datatype, you
do not need to specify any optional attributes.

The second of our optional attributes, nonatomic, changes the way that the accessor and
mutator methods are generated. Without getting too technical, let’s just say that, by default,
these methods are created with some additional code that is helpful when writing multi-
threaded programs. That additional overhead, though small, is unnecessary when declaring
a pointer to a user interface object, so we declare nonatomic to save a bit of overhead. There
will be times where you don’t want to specify nonatomic for a property, but as a general
rule, most of the time you will specify nonatomic when writing iPhone applications.

Objective-C 2.0 has another nice feature that we’ll be using along with properties. It intro-
duced the use of dot notation to the language. Traditionally, to use an accessor method,
you would send a message to the object, like this:

myVar = [someObject foo];

This approach still works just fine. But when you’ve defined a property, you also have the
option of using dot notation, similar to that used in Java, C++, and C#, like so:

myVar = someObject.foo;

Those two statements are identical as far as the compiler is concerned; use whichever one
makes you happy. Dot notation also works with mutators. The statement shown here:

24594ch03.indd 38 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 39

someObject.foo = myVar;

is functionally identical to the following:

[someObject setFoo:myVar];

Declaring the Action Method
After the property declaration, we added another line of code:

- (IBAction)buttonPressed:(id)sender;

This is our action method declaration. By placing this declaration here, we are informing
other classes, and Interface Builder, that our class has an action method called button-
Pressed:.

Adding Actions and Outlets to the Implementation File
We are done with our controller class header file for the time being, so save it and single-
click the class’s implementation file, Button_FunViewController.m. The file should look like
this:

#import "Button_FunViewController.h"

@implementation Button_FunViewController

/*
// The designated initializer. Override to perform setup
// that is required before the view is loaded.
- (id)initWithNibName:(NSString *)nibNameOrNil bundle:
 (NSBundle *)nibBundleOrNil {
 if (self=[super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
}
*/

/*
// Implement loadView to create a view hierarchy programmatically,
// without using a nib.
- (void)loadView {
}
*/

/*
// Implement viewDidLoad to do additional setup after loading the view,

24594ch03.indd 39 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction40

// typically from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
*/

/*
// Override to allow orientations other than the default portrait
// orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)dealloc {
 [super dealloc];
}

@end

Apple has anticipated some of the methods that we are likely to override and has included
method stubs in the implementation file. Some of them are commented out and can be
either uncommented or deleted as appropriate. The ones that aren’t commented out are
either used by the template or are so commonly used that they were included to save us
time. We won’t need any of the commented-out methods for this application, so go ahead
and delete them, which will shorten up the code and make it easier to follow as we insert
new code into this file.

Once you’ve deleted the commented-out methods, add the following code. When you’re
done, meet us back here, and we’ll talk about what we did:

24594ch03.indd 40 6/23/09 10:34:51 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 41

#import "Button_FunViewController.h"

@implementation Button_FunViewController
@synthesize statusText;

- (IBAction)buttonPressed:(id)sender {
 NSString *title = [sender titleForState:UIControlStateNormal];
 NSString *newText = [[NSString alloc] initWithFormat:
 @"%@ button pressed.", title];
 statusText.text = newText;
 [newText release];
}
- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning]; // Releases the view if it
 // doesn't have a superview
 // Release anything that's not essential, such as cached data
}
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.statusText = nil;
}
- (void)dealloc {
 [statusText release];
 [super dealloc];
}

@end

OK, let’s look at the newly added code. First, we added this:

@synthesize statusText;

This is how we tell the compiler to automatically create the accessor and mutator meth-
ods for us. By virtue of this line of code, there are now two “invisible” methods in our class:
statusText and setStatusText:. We didn’t write them, but they are there nonetheless,
waiting for us to use them.

The next bit of newly added code is the implementation of our action method that will get
called when either button is tapped:

-(IBAction)buttonPressed: (id)sender {
 NSString *title = [sender titleForState:UIControlStateNormal];
 NSString *newText = [[NSString alloc] initWithFormat:
 @"%@ button pressed.", title];

24594ch03.indd 41 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction42

 statusText.text = newText;
 [newText release];
}

Remember that the parameter passed into an action method is the control or object that
invoked it. So, in our application, sender will always point to the button that was tapped.
This is a very handy mechanism, because it allows us to have one action method handle the
input from multiple controls, which is exactly what we’re doing here: both buttons call this
method, and we tell them apart by looking at sender. The first line of code in this method
grabs the tapped button’s title from sender.

NSString *title = [sender titleForState:UIControlStateNormal];

NOTE
We had to provide a control state when we requested the button’s title. The four possible states are
normal, which represents the control when it’s active but not currently being used; highlighted, which
represents the control when it is in the process of being tapped or otherwise used; disabled, which is the
state of a button that is not enabled and can’t be used; and selected, which is a state that only certain
controls have and which indicates that the control is currently selected. UIControlStateNormal
represents a control’s normal state and is the one you will use the vast majority of the time. If values for
the other states are not specified, those states will have the same value as the normal state.

The next thing we do is create a new string based on that title:

NSString *newText = [[NSString alloc] initWithFormat:
 @"%@ button pressed.", title];

This new string will append the text “button pressed.” to the name of the button. So if we
tapped a button with a title of “Left,” this new string would equal “Left button pressed.”

Finally, we set the text of our label to this new string:

statusText.text = newText;

We’re using dot notation here to set the label’s text, but we could have also used
 [statusText setText:newText]; instead. Finally, we release the string:

[newText release];

The importance of releasing objects when you’re done with them cannot be overstated.
iPhone is a very resource-constrained device, and even a small number of memory leaks can
cause your program to crash. It’s also worth pointing out that we didn’t do this:

24594ch03.indd 42 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 43

NSString *newText = [NSString stringWithFormat:
 @"%@ button pressed.", title];

This code would work exactly the same as the code we used. Class methods like this one are
called convenience or factory methods, and they return an autoreleased object. Follow-
ing the general memory rule that “if you didn’t allocate it or retain it, don’t release it,” these
autoreleased objects don’t have to be released unless you specifically retain them, and using
them often results in code that’s a little shorter and more readable.

But, there is a cost associated with these convenience methods because they use the autore-
lease pool. The memory allocated for an autoreleased object will stay allocated for some
period of time after we’re done with it. On Mac OS X, with swap files and relatively large
amounts of physical memory, the cost of using autoreleased objects is nominal, but on
iPhone, these objects can have a detrimental effect on your application’s memory footprint.
It is OK to use autorelease, but try to use it only when you really need to, not just to save typ-
ing a line or two of code.

Next, we added a single line of code to the existing viewDidUnload: method:

 self.statusText = nil;

Don’t worry too much about this line of code for now; we’ll explain why this line of code is
needed in the next chapter. For now, just remember that you need to set any outlets your
class has to nil in viewDidUnload.

TIP
If you’re a bit fuzzy on objective-C memory management, you really should review the memory
management “contract” at http://developer.apple.com/documentation/Cocoa/
Conceptual/MemoryMgmt/Articles/mmRules.html. Even a small number of memory leaks
can wreak havoc in an iPhone application.

The last thing we did was to release the outlet in our dealloc method:

 [statusText release];

Releasing this item might seem strange. You might be thinking, since we didn’t instantiate
it, we shouldn’t be responsible for releasing it. If you have worked with older versions of
Cocoa and Objective-C, you’re probably thinking this is just plain wrong. However, because
we implemented properties for each of these outlets and specified retain in that property’s
attributes, releasing it is correct and necessary. Interface Builder will use our generated
mutator method when assigning the outlets, and that mutator will retain the object that is
assigned to it, so it’s important to release the outlet here to avoid leaking memory.

24594ch03.indd 43 6/23/09 10:34:52 AM

Download at Boykma.Com

http://developer.apple.com/documentation/Cocoa/

CHAPTER 3: Handling Basic Interaction44

Before moving on, make sure you’ve saved this file, and then go ahead and build the project
by pressing ⌘B to make sure you didn’t make any mistakes while typing. If it doesn’t com-
pile, go back and compare your code to the code in this book.

MESSAGE NESTING
Objective-C messages are often nested by some developers. You may come across code like this in your
 travels:

statusText.text = [NSString stringWithFormat:@”%@ button pressed.”,
 [sender titleForState:UIControlStateNormal]];

This one line of code will function exactly the same as the four lines of code that make up our button-
Pressed: method. For sake of clarity, we won’t generally nest Objective-C messages in the code examples
in this book, with the exception of calls to alloc and init, which, by longstanding convention, are almost
always nested.

Using the Application Delegate
The other two files under the Classes folder implement our application delegate. Cocoa
Touch makes extensive use of delegates, which are classes that take responsibility for doing
certain things on behalf of another object. The application delegate lets us do things at cer-
tain predefined times on behalf of the UIApplication class. Every iPhone application has
one and only one instance of UIApplication, which is responsible for the application’s run
loop and handles application-level functionality such as routing input to the appropriate
controller class.

UIApplication is a standard part of the UIKit, and it does its job mostly behind the scenes,
so you don’t have to worry about it for the most part. At certain well-defined times during an
application’s execution, however, UIApplication will call specific delegate methods, if there
is a delegate and if it implements that method. For example, if you have code that needs to
fire just before your program quits, you would implement the method applicationWill-
Terminate: in your application delegate and put your termination code there. This type of
delegation allows our application to implement common application-wide behavior with-
out having to subclass UIApplication or, indeed, to even know anything about its inner
 workings.

Click Button_FunAppDelegate.h in the Groups & Files pane, and look at the application del-
egate’s header file. It should look like this:

24594ch03.indd 44 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 45

#import <UIKit/UIKit.h>

@class Button_FunViewController;

@interface Button_FunAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 Button_FunViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet Button_FunViewController
 *viewController;

@end

We don’t need to make any changes to this file, and after implementing our controller class,
most everything here should look familiar to you. One thing worth pointing out is this line of
code:

@interface Button_FunAppDelegate : NSObject <UIApplicationDelegate> {

Do you see that value between the angle brackets? This indicates that this class conforms
to a protocol called UIApplicationDelegate. Hold down the option key, and move your
cursor so that it is over the word UIApplicationDelegate. Your cursor should turn into
crosshairs; when it does, double-click. This will open the documentation browser and show
you the documentation for the UIApplicationDelegate protocol (see Figure 3-3). This
same trick works with class, protocol, and category names, as well as method names dis-
played in the editor pane. Just option–double-click a word, and it will search for that word in
the documentation browser.

Knowing how to quickly look up things in the documentation is definitely worthwhile, but
looking at the definition of this protocol is perhaps more important. Here’s where you’ll find
what methods the application delegate can implement and when those methods will get
called. It’s probably worth your time to read over the descriptions of these methods.

NOTE
If you’ve worked with Objective-C before but not with Objective-C 2.0, you should be aware that protocols
can now specify optional methods. UIApplicationDelegate contains many optional methods, and
you do not need to implement any of the optional methods in your application delegate unless you have a
reason.

24594ch03.indd 45 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction46

Figure 3-3. Looking at the UIApplicationDelegate documentation using the documentation browser

Click Button_FunAppDelegate.m, and look at the implementation of the application delegate.
It should look like this:

#import "Button_FunAppDelegate.h"
#import "Button_FunViewController.h"

@implementation Button_FunAppDelegate

@synthesize window;
@synthesize viewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

24594ch03.indd 46 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 47

 // Override point for customization after app launch
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}

@end

Right in the middle of the file, you can see that our application delegate has implemented
one of the protocol’s methods: applicationDidFinishLaunching:, which, as you can
probably guess, fires as soon as the application has finished all the setup work and is ready
to start interacting with the user.

Our delegate version of applicationDidFinishLaunching: adds our view controller’s view
as a subview to the application’s main window and makes the window visible, which is how
the view we are going to design gets shown to the user. You don’t need to do anything to
make this happen; it’s all part of the code generated by the template we used to build this
project.

We just wanted to give you a bit of background on application delegates and see how this
all ties together.

Editing MainWindow.xib
So far, we’ve looked at the four files in our project’s Classes tab (two .m files, two .h files).
In previous chapters, we’ve had experience with two of the three files in our project’s
Resources tab. We looked at the equivalent of Button_Fun-Info.plist when we added our
icon to the project, and we looked at the equivalent of Button_FunViewController.xib
when we added our “Hello, World!” label.

There’s one other file in the Resources tab that we want to talk about. The file MainWindow.
xib is what causes your application’s delegate, main window, and view controller instances
to get created at runtime. Remember, this file is provided as part of the project template.
You don’t need to change or do anything here. This is just a chance to see what’s going on
behind the scenes, to get a glimpse of the big picture.

24594ch03.indd 47 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction48

Expand the Resources folder in Xcode’s Groups
& Files pane, and double-click MainWindow.xib.
Once Interface Builder opens, take a look at the
nib’s main window—the one labeled MainWin-
dow.xib, which should look like Figure 3-4.

You should recognize the first two icons in this
window from Chapter 2. As a reminder, every icon
in a nib window after the first two represents an
object that will get instantiated when the nib file
loads. Let’s take a look at the third, fourth, and
fifth icons.

NOTE
Long names get truncated in the nib file’s main window in the default view, as you can see in Figure 3-4.
If you hold your cursor over one of these icons for a few seconds, a tooltip will pop up to show you the full
name of the item. Note also that the names shown in the main window do not necessarily indicate the
underlying class of the object. The default name for a new instance usually will clue you in to the underly-
ing class, but these names can be, and often are, changed.

The third icon is an instance of Button_FunAppDelegate. The fourth icon is an instance of
Button_FunViewController. And, finally, the fifth icon is our application’s one and only
window (an instance of UIWindow). These three icons indicate that once the nib file is loaded,
our application will have one instance of the application delegate, Button_FunAppDelegate;
one instance of our view controller, Button_FunViewController; and one instance of
UIWindow (the class that represents the application’s one and only window). As you can see,
Interface Builder can do much more than just create interface elements. It allows you to cre-
ate instances of other classes as well. This is an incredibly powerful feature. Every line of code
that you don’t write is a line of code you don’t have to debug or maintain. Right here, we’re
creating three object instances at launch time without having to write a single line of code.

OK, that’s all there is to see here, folks; move along. Be sure to close this nib file on the way
out. And if you are prompted to save, just say “no,” because you shouldn’t have changed
 anything.

Figure 3-4. Our application’s
MainWindow.xib as it appears in
Interface Builder

24594ch03.indd 48 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 49

Editing Button_FunViewController.xib
Now that you have a handle on the files that make up our project and the concepts that
bring them all together, let’s turn our attention to Interface Builder and the process of con-
structing our interface.

Creating the View in Interface Builder
In Xcode, double-click Button_FunViewController.xib in the Groups & Files pane. The nib file
should open in Interface Builder. Make sure the library is visible. If it’s not, you can show it
by selecting Library from the Tools menu. You also need to make sure that the nib’s View
window is open. If it’s not, double-click the icon called View in the nib’s main window (see
Figure 3-5).

Figure 3-5. Button_FunViewController.xib open in Interface Builder

24594ch03.indd 49 6/23/09 10:34:52 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction50

Now we’re ready to design our interface. Drag a label from the library over to the view win-
dow, just as you did in the previous chapter. Place the label toward the bottom of the view,
so the label lines up with the left and bottom blue guidelines (see Figure 3-6). Next, expand
the label so the right side lines up with the guideline on the right side of the window.

Figure 3-6. Using the blue guidelines to place objects

NOTE
The little blue guidelines are there to help you stick to the Apple Human Interface Guidelines (usually
referred to as “the HIG”). Yep, just like it does for Mac OS X, Apple provides the iPhone Human Interface
Guidelines for designing iPhone applications. The HIG tells you how you should—and shouldn’t—design
your user interface. You really should read it, because it contains valuable information that every iPhone
developer needs to know. You’ll find it at http://developer.apple.com/iphone/library/
documentation/UserExperience/Conceptual/MobileHIG/.

24594ch03.indd 50 6/23/09 10:34:52 AM

Download at Boykma.Com

http://developer.apple.com/iphone/library/

CHAPTER 3: Handling Basic Interaction 51

After you’ve placed the label at the bottom of the
view, click it to select it, and press ⌘1 to bring up the
inspector. Change the text alignment to centered by
using the text alignment buttons on the inspector
(see Figure 3-7).

Now, double-click the label, and delete the existing
text. We don’t want any text to display until a button
has been tapped.

Next, we’re going to drag two Round Rect Buttons from
the library (see Figure 3-8) to our view.

Figure 3-8. The Round Rect Button
as it appears in the library

Place the two buttons next to each other, roughly in
the middle of the view. The exact placement doesn’t
matter. Double-click the button that you placed on
the left. Doing this will allow the button’s title to
be edited, so go ahead and change its text to read
“Left.” Next, double-click the button on the right, and
change its text to read “Right.” When you’re done, your
view should look something like the one shown in
Figure 3-9.

Figure 3-7. The inspector’s text
alignment buttons

24594ch03.indd 51 6/23/09 10:34:53 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction52

Figure 3-9. The finished view

Connecting Everything
We now have all the pieces of our interface. All that’s left is to make the various connections
that will allow these pieces to work together.

The first step is to make a connection from File’s Owner to the label in the View window. Why
File’s Owner?

When an instance of UIViewController or one of its subclasses is instantiated, it can be
told to initialize itself from a nib. In the template we’ve used, the Button_FunViewCon-
troller class will be loaded from the nib file Button_FunViewController.xib. We don’t have to
do anything to make that happen; it’s part of the project template we chose. In future chap-
ters, you’ll see exactly how that process works. Since the MainWindow.xib file contains an
icon that represents Button_FunViewController, an instance of Button_FunViewController
will get created automagically when our application launches. When that happens, that
instance will automatically load Button_FunViewController.xib into memory and become its
file’s owner.

Earlier in the chapter, we added an outlet to Button_FunViewController, which is this nib’s
owner. We can now make a connection between that outlet and the label using the File’s
Owner icon. Let’s look at how we do that.

24594ch03.indd 52 6/23/09 10:34:53 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 53

NOTE
It’s OK if you don’t fully understand the nib loading process yet. It’s complicated, and we’ll be talking
about it and seeing it in action in several of the later chapters. For now, just remember that your control-
ler class is the file’s owner for the nib file of the same name.

Connecting Outlets
Hold down the control key; click the File’s Owner icon in the main nib window; and keep the
mouse button down. Drag away from the File’s Owner icon toward the View window. A blue
guideline should appear. Keep dragging until your cursor is over the label in the View win-
dow. Even though you won’t be able to see the label, it will magically appear once you are
over it (see Figure 3-10).

Figure 3-10. Control-dragging to connect outlets

24594ch03.indd 53 6/23/09 10:34:53 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction54

With the cursor still over the label, let go of the mouse button, and a small gray menu like
the one shown in Figure 3-11 should pop up.

Figure 3-11. Outlet selection menu

Select statusText from the gray menu.

By control-dragging from File’s Owner to an interface object, you are telling Interface Builder
that you want to connect one of the File’s Owner’s outlets to this object when the nib file
is loaded. In this case, the file’s owner is the class Button_FunViewController, and the
Button_FunViewController outlet we are interested in is statusText. When we control-
dragged from File’s Owner to the label object and selected statusText from the pop-up
menu that appeared, we told Interface Builder to have Button_FunViewController’s sta-
tusText outlet point to the label, so any time we refer to statusText in our code, we will be
dealing with this label. Cool, eh?

Specifying Actions
The only thing left to do is to identify which actions these buttons trigger and under what
circumstances they trigger them. If you’re familiar with Cocoa programming for Mac OS X,
you’re probably getting ready to control-drag from the buttons over to the File’s Owner icon.
And, to be honest, that will work, but it’s not the best way to do it.

24594ch03.indd 54 6/23/09 10:34:53 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction 55

iPhone is different from Mac OS X, and here’s one of the places where that difference
becomes apparent. On the Mac, a control can be associated with just one action, and that
action is typically triggered when that control is used. There are some exceptions to this, but
by and large, a control triggers its corresponding action method when the mouse button is
released if the cursor is still inside the bounds of that control.

Controls in Cocoa Touch offer a lot more possibilities,
so instead of click-dragging from the control, it’s best
to get in the habit of using the connections inspector,
which we can get to by pressing ⌘2 or selecting Con-
nection Inspector from the Tools menu. Click the Left
button, and then bring up the connections inspector.
It should look like Figure 3-12.

Under the heading Events, you’ll see a whole list of
events that can potentially trigger an action. If you
like, you can associate different actions with different
events. For example, you might use Touch Up Inside
to trigger one action, while Touch Drag Inside triggers
a different action. Our situation is relatively simple
and straightforward. When the user taps our button,
we want it to call our buttonPressed: method. The
first question is which of the events in Figure 3-12 do
we use?

The answer, which may not be obvious at first, is Touch Up Inside. When the user’s finger
lifts up from the screen, if the last place it touched before lifting was inside the button, the
user triggers a touch up inside. Think about what happens in most of your iPhone applica-
tions if you touch the screen and change your mind. You move your finger off the button
before lifting up, right? We should give our users the same ability. If our user’s finger is still
on the button when it’s lifted off the screen, then we can safely assume that the button tap
is intended.

Now that we know the event we want to trigger our action, how do we associate the event
with a specific action method?

See that little circle in the inspector to the right of Touch Up Inside? Click in that circle and
drag away with the mouse button still pressed; there’s no need to hold down the control
key this time. You should get a gray connection line, just as you did when we were connect-
ing outlets earlier. Drag this line over to the File’s Owner icon, and when the little gray menu
pops up, select buttonPressed:. Remember, the File’s Owner icon represents the class whose
nib we are editing. In this case, File’s Owner represents our application’s sole instance of
the Button_FunViewController class. When we drag from the button’s event to the File’s

Figure 3-12. The connections
inspector showing our button’s
 available events

24594ch03.indd 55 6/23/09 10:34:53 AM

Download at Boykma.Com

CHAPTER 3: Handling Basic Interaction56

Owner icon, we are telling Interface Builder to call the selected method when the
specified event occurs. So when the user touches up inside the button, the Button_
FunViewController class’s buttonPressed: method will be called.

Do this same sequence with the other button and then save. Now, any time the user taps
one of these buttons, our buttonPressed: method will get called.

Trying It Out
Save the nib file; then head back to Xcode and take your application for a spin. Select Build
and Run from the Build menu. Your code should compile, and your application should come
up in the iPhone Simulator. When you tap the left button, the text “Left button pressed.”
should appear, as it does in Figure 3-1. If you then tap the right button, the label will change
to say “Right button pressed.”

Bring It on Home
This chapter’s simple application introduced you to MVC, creating and connecting outlets
and actions, implementing view controllers, and using application delegates. You learned
how to trigger action methods when a button is tapped and saw how to change the text of
a label at runtime. Although a simple application, the basic concepts we used to build it are
the same concepts that underlie the use of all controls on the iPhone, not just buttons. In
fact, the way we used buttons and labels in this chapter is pretty much the way that we will
implement and interact with most of the standard controls on the iPhone.

It’s very important that you understand everything we did in this chapter and why we did
it. If you don’t, go back and redo the parts that you don’t fully understand. This is important
stuff! If you don’t make sure you understand everything now, you will only get more con-
fused as we get into creating more complex interfaces later on in this book.

In the next chapter, we’ll take a look at some of the other standard iPhone controls. You’ll
also learn how to use alerts to notify the user of important happenings and how to indicate
that the user needs to make a choice before proceeding by using action sheets. When you
feel you’re ready to proceed, give yourself a pat on the back for being such an awesome
 student, and head on over to the next chapter.

24594ch03.indd 56 6/23/09 10:34:53 AM

Download at Boykma.Com

Chapter 4

57

i
More User
Interface Fun

n Chapter 3, we discussed the Model-View-Controller concept and built an
application that brought that idea to life. You learned about outlets and
actions and used them to tie a button control to a text label. In this chapter,
we’re going to build an application that will take your knowledge of controls
to a whole new level.

We’ll implement an image view, a slider, two different text fields, a segmented
control, a couple of switches, and an iPhone button that looks more like, well,
an iPhone button. You’ll learn how to use the view hierarchy to group multiple
items under a common parent view and make manipulating the interface at
runtime easier. You’ll see how to set and retrieve the values of various con-
trols, both by using outlets and by using the sender argument of our action
methods. After that, we’ll look at using action sheets to force the user to make
a choice and alerts to give the user important feedback. We’ll also learn about
control states and the use of stretchable images to make buttons look the way
they should.

Because this chapter’s application uses so many different user interface items,
we’re going to work a little differently than we did in the previous two chap-
ters. We’re going to break our application into pieces, implementing one piece
at a time and bouncing back and forth between Xcode, Interface Builder, and
the iPhone simulator and testing each piece before we move on to the next.
Breaking the process of building a complex interface into smaller chunks will
make it much less intimidating and will make it more closely resemble the
actual process you’ll go through when building your own applications. This
code-compile-debug cycle makes up a large part of a software developer’s
typical day.

24594ch04.indd 57 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun58

A Screen Full of Controls
As we mentioned, the application we’re going to build in
this chapter is a bit more complex than was the case in
Chapter 3. We’re still going to use only a single view and
controller, but as you can see in Figure 4-1, there’s quite a bit
more going on in this one view.

The logo at the top of the iPhone screen is an image view,
and in this application, it does nothing more than display a
static image. Below the logo, there are two text fields, one
that allows the entry of alphanumeric text and one that
allows only numbers. Below the text fields is a slider. As the
user changes the slider, the value of the label next to it will
change so that it always reflects the slider’s value.

Below the slider is a segmented control and two switches.
The segmented control will toggle between two different
types of controls in the space below it. When the applica-
tion first launches, there will be two switches below the
segmented control. Changing the value of either switch will
cause the other one to change its value to match. Now, this
isn’t something you would likely do in a real application,
but it will let us show you how to change the value of a control programmatically and how
Cocoa Touch animates certain actions for you without you having to do any work.

Figure 4-2 shows what happens when the user taps the segmented control. The switches
disappear and are replaced by a button.

When the Do Something button is pressed, an action sheet will pop up and ask the user if
they really meant to tap the button (see Figure 4-3). This is the standard way of responding
to input that is potentially dangerous or that could have significant repercussions and gives
the user a chance to stop potential badness from happening.

If Yes, I’m Sure! is selected, the application will put up an alert, letting the user know that
everything is OK (see Figure 4-4).

Figure 4-1. The Control Fun
application, featuring text fields,
labels, a slider, and several other
stock iPhone controls

24594ch04.indd 58 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 59

Figure 4-2. Tapping the seg-
mented controller on the left
side cause a pair of switches
to be displayed. Tapping the
right side causes a button to be
displayed.

Figure 4-3. Our application
uses an action sheet to solicit a
response from the user.

Figure 4-4. Alerts are used to
notify the user when important
things happen. We use one
here to confirm that everything
went OK.

Active, Static, and Passive Controls
User interface controls come in three basic forms: active, static (or inactive), and passive. The
buttons that we used in the previous chapter are classic examples of active controls. You
push them, and something happens—usually, a piece of code fires. Although many of the
controls that you will use will directly trigger action methods, not all controls will.

The label that you used in the previous chapter is a good example of a static control. You
added it to your interface and even changed it programmatically, but the user could not
do anything with it. Labels and images are both controls that are often used in this manner,
though both are subclasses of UIControl and can be made to fire code if you need them to
do so.

Some controls can work in a passive manner, simply holding on to a value that the user has
entered until you’re ready for it. These controls don’t trigger action methods, but the user
can interact with them and change their values.

24594ch04.indd 59 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun60

A classic example of a passive control is a text field on a web page. Although there can be
validation code that fires when you tab out of a field, the vast majority of web page text
fields are simply containers for data that get submitted to the server when you click the sub-
mit button. The text fields themselves don’t actually trigger any code to fire, but when the
submit button is clicked, the text field’s data goes along for the ride.

On an iPhone, many of the available controls can be used in all three ways, and most can
function in more than one, depending on your needs. All iPhone controls are subclasses of
UIControl and, because of that, are capable of triggering action methods. Most controls
can also be used passively, and all of them can be made inactive when they are created or
changed from active to inactive, and vice versa, at runtime. For example, using one control
could trigger another inactive control to become active. However, some controls, such as
buttons, really don’t serve much purpose unless they are used in an active manner to trigger
code.

As you might expect, there are some behavioral differences between controls on the iPhone
and those on your Mac. Here are a few examples. Because of the multitouch interface, all
iPhone controls can trigger multiple actions depending on how they are touched: your user
might trigger a different action with a finger swipe across the control than with just a touch.
You could also have one action fire when the user presses down on a button and a separate
action fire when the finger is lifted off the button. Conversely, you could also have a single
control call multiple action methods on a single event. You could have two different action
methods fire on the touch up inside event, meaning that both methods would get called
when the user’s finger is lifted after touching that button.

Another major difference between the iPhone and the Mac stems from the fact that the
iPhone has no physical keyboard. The iPhone keyboard is actually just a view filled with a
series of button controls. Your code will likely never directly interact with the iPhone key-
board, but as you’ll see later in the chapter, sometimes you have to write code to make the
keyboard behave in exactly the manner you want.

Creating the Application
Fire up Xcode if it’s not already open, and create a new project called Control Fun. We’re
going to use the View-based Application template option again, so create your project just
as you did in the previous two chapters.

Importing the Image
Now that you’ve created your project, let’s go get the image we’ll use in our image view.
The image has to be imported into Xcode before it will be available for use inside Interface
Builder, so let’s import it now. You can find a suitable .png image in the project archives in

24594ch04.indd 60 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 61

the 04 Control Fun directory, or you can use an image of your own choosing—make sure
that the image you select is a .png image sized correctly for the space available. It should be
fewer than 100 pixels tall and not more than 300 pixels wide so that it can comfortably fit at
the top of the view without being resized.

Add the image to the Resources folder of your project, just as we did in Chapter 2, by either
dragging the image from the Finder to the Resources folder or by selecting Add to from the
Project menu.

Implementing the Image View and
Text Fields
With the image added to your project, your next
step is to implement the five interface elements at
the top of the application’s screen, with the image
view, the two text fields, and the two labels (see
Figure 4-5).

Determining Outlets
Before we hop over to Interface Builder, we need to figure out which of these objects
requires an outlet. Remember, outlets have to be defined in your controller class’s header file
before you can connect them to anything in Interface Builder.

The image view is just a static image. We’re going to designate the image to be displayed
right in Interface Builder, and that image won’t change while our application is running. As a
result, it does not require an outlet. If we did want to change the image or change any of its
characteristics at runtime, we would need an outlet. That is not the case here.

The same is true for the two labels. They are there to display text but won’t be changed at
runtime, and the user won’t interact with them, so we don’t need outlets for them either.

On the other hand, the two text fields aren’t really much use if we can’t get to the data they
contain. The way to access the data held by a passive control is to use an outlet, so we need
to define an outlet for each of these text fields. This is old hat for you by now, so why don’t
you add two outlets and their corresponding properties to your Control_FunViewController.h
class file using the names nameField and numberField? When you’re done, it should look
something like this:

#import <UIKit/UIKit.h>

@interface Control_FunViewController : UIViewController {
 UITextField *nameField;
 UITextField *numberField;
}

Figure 4-5. The image view, labels, and
text fields we will implement first

24594ch04.indd 61 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun62

@property (nonatomic, retain) IBOutlet UITextField *nameField;
@property (nonatomic, retain) IBOutlet UITextField *numberField;
@end

Before we move on to Interface Builder, let’s also add our @synthesize directives to Control_
FunViewController.m:

#import "Control_FunViewController.h"

@implementation Control_FunViewController
@synthesize nameField;
@synthesize numberField;
...

NOTE
See the ellipsis (. . .) at the end of that code listing? We’ll use that symbol to indicate that there is existing
code beyond what we’ve shown in the listing that does not require any changes. We’ll be adding all of our
code to the top of the implementation file in this chapter, so by using the ellipsis, we can avoid having to
show the whole file every time we have you add a line or two of code.

We also need to make sure that we’re careful about memory, so since we declared the
 nameField and numberField properties with the retain keyword, we need to release them
both in our dealloc method. Scroll down to the bottom of the file, and add the following
two lines to the existing dealloc method:

- (void)dealloc {
 [nameField release];
 [numberField release];
 [super dealloc];
}

Determining Actions
Take a look at the five objects in Figure 4-5 again. Do you see the need to declare any
actions? The image views and the labels do not have user interaction enabled and can’t
receive touches, so there’s no reason to have actions for them, right? Right.

What about the two text fields? Text fields are the classic passive control. The vast majority of
the time, all they do is hold onto values until you’re ready for them. We’re not doing any vali-
dation on these fields, other than limiting the input of the number field by showing only the
number pad instead of the full keyboard (which we can do entirely in Interface Builder), so
we don’t need an action for these either, right? Well, hold that thought. Let’s build and test
the first part of our user interface.

24594ch04.indd 62 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 63

Building the Interface
Make sure both of those files are saved, expand the
Resources folder in the Groups & Files pane, and double-
click Control_FunViewController.xib to launch Interface
Builder. If the window titled View is not open, double-click
the View icon in the nib file’s main window.

Now, turn your attention to the library. If it’s not open,
select Library from the Tools menu. Scroll about one-
fourth of the way through the list until you find Image
View (see Figure 4-6).

Adding the Image View
Drag an image view onto the window called View. Because this is the first item you’re put-
ting on your view, Interface Builder is going to automatically resize the image view so that
it’s the same size as the view. Since we don’t want our image view to take the entire space,
use the drag handles to resize the image view to the approximate size of the image you
imported into Xcode. Don’t worry about getting it exactly right yet. It’ll be easier to do that
in a moment.

By the way, sometimes an object will get deselected and can be very hard to select again
because it is behind another object, takes up the entire view, or has no drawn border. In
those cases, don’t despair! There is a way to select the object again. In the nib’s main win-
dow, you’ll see three buttons labeled View Mode. Click the middle one, and you’ll get a
hierarchical view of the nib, which will let you drill down into subviews, as shown in
Figure 4-7. Double-clicking any item in this view will also cause the same item to become
selected in the View window.

Figure 4-7. Putting the nib’s main window in hierarchical
view and drilling down to subviews

Figure 4-6. The Image View ele-
ment in Interface Builder’s library

24594ch04.indd 63 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun64

With the image view selected, bring up the inspec-
tor by pressing ⌘1, and you should see the editable
options of the UIImageView class, as shown in
Figure 4-8.

The most important setting for our image view is the
topmost item in the inspector, labeled Image. If you
click the little arrow to the right of the field, a menu
will pop up with the available images, which should
include any images that you added to your Xcode
project. Select the image you added a minute ago.
Your image should now appear in your image view.

Resize the Image View
Now, resize your image view so that it is exactly the
same size as your image. We’ll talk about why in a
moment. An easy way to resize the view so that it’s
the same size as the selected image is to press ⌘= or
to select Size to Fit from the Layout menu, which will automatically resize any view to the
exact size needed to contain its contents. You’ll also want to move the resized image so that
it’s centered and the top is aligned with the blue guidelines. You can easily center an item in
the view by choosing Align Horizontal Center in Container from the Layout menu’s Align-
ment submenu.

TIP
Dragging and resizing views in Interface Builder can be tricky. Don’t forget about the hierarchical View
Mode button in the main nib window. It will help you find and select (double-click) the image view. When
it comes to resizing, hold down the option key. Interface Builder will draw some helpful red lines on the
screen that make it much easier to get a sense of the image view’s size. This trick won’t work for drag-
ging, but if you select Show Bounds Rectangles from the Layout Menu, it will draw a line around all of
your interface items, making them easier to see. You can turn those lines off by selecting Show Bounds
 Rectangles a second time.

The Mode Attribute
The next option down in the image view inspector is a pop-up menu labeled Mode. The
Mode menu defines how the image will be aligned inside the view and whether it will be
scaled to fit. You can feel free to play with the various options, but the default value of Center
is probably best for our needs. Keep in mind that choosing any option that causes the image

Figure 4-8. The image view inspector

24594ch04.indd 64 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 65

to scale will potentially add processing overhead, so it’s best to avoid those and size your
images correctly before you import them. If you want to display the same image at multiple
sizes, generally it’s better to have multiple copies of the image at different sizes in your proj-
ect rather than force the iPhone to do scaling at runtime.

The Alpha Slider
The next item in the inspector is Alpha, and this is one you need to be very careful with.
Alpha defines how transparent your image is: how much of what’s beneath it shows
through. If you have any value less than 1.0, your iPhone will draw this view as transparent
so that any objects underneath it show through. With a value less than 1.0, even if there’s
nothing actually underneath your image, you will cause your application to spend processor
cycles calculating transparency, so don’t set this to anything other than 1.0 unless you have
a very good reason for doing so.

Ignore the Background
You can ignore the next item down, called Background. This is a property inherited from
UIView, but it doesn’t impact the appearance of an image view.

The Tag Attribute
The next item down—Tag—is worth mentioning, though we won’t be using it in this chap-
ter. All subclasses of UIView, including all views and controls, have a property called tag,
which is just a numeric value that you can set that will tag along with your image view. The
tag is designed for your use; the system will never set or change its value. If you assign a tag
value to a control or view, you can be sure that the tag will always have that value unless you
change it.

Tags provide an easy, language-independent way of identifying objects on your interface.
Let’s say you had five different buttons, each with a different label, and you wanted to use
a single action method to handle all five buttons. In that case, you would probably need
some way to differentiate among the buttons when your action method was called. Sure,
you could look at the button’s title, but code that does that probably won’t work when your
application is translated into Swahili or Sanskrit. Unlike labels, tags will never change, so if
you set a tag value here in Interface Builder, you can then use that as a fast and reliable way
to check which control was passed into an action method in the sender argument.

The Drawing Checkboxes
Below Tag are a series of Drawing checkboxes. The first one is labeled Opaque. Select it. This
tells the iPhone OS that nothing behind your view should be drawn and allows iPhone’s
drawing methods to do some optimizations that speed up drawing.

24594ch04.indd 65 6/25/09 4:17:43 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun66

You might be wondering why we need to select the Opaque checkbox, when we’ve already
set the value of Alpha to 1.0 to indicate no transparency. The reason is that the alpha value
applies to the parts of the image to be drawn, but if an image doesn’t completely fill the
image view, or there are holes in the image thanks to an alpha channel or clipping path,
the objects below will still show through regardless of the value set in Alpha. By selecting
Opaque, we are telling iPhone that nothing below this view ever needs to be drawn no mat-
ter what, so it needn’t waste processing time with anything below our object. We can safely
select the Opaque checkbox, because we earlier selected Size to Fit, which caused the image
view to match the size of the image it contains.

The Hidden checkbox does exactly what you think it does. If it’s checked, the user can’t see
this control. Hiding the control can be useful at times, including later in this chapter when
we hide the switches and button, but the vast majority of the time you want this to remain
unchecked. We can leave this at the default value.

The next checkbox, called Clear Context Before Drawing, will rarely need to be checked. When
it is checked, iPhone will draw the entire area covered by the control in transparent black
before it actually draws the control. Again, it is turned off for the sake of performance and
because it’s rarely needed.

Clip Subviews is an interesting option. If your view has subviews, and those subviews are not
completely contained within the bounds of its parent view, this checkbox determines how
the subviews will be drawn. If Clip Subviews is checked, only the portions of subviews that lie
within the bounds of the parent will be drawn. If Clip Subviews is unchecked, subviews will
be drawn completely even if they lie outside of the bounds of the parent. If that seems con-
fusing, you can see an illustration of the concept in Figure 4-9.

It might seem that the default behavior should be the opposite of what it actually is: that
Clip Subviews should be enabled by default. As with many other things on the iPhone, this
has to do with performance. Calculating the clipping area and displaying only part of the
subviews is a somewhat costly operation, mathematically speaking, and the vast majority of
the time subview won’t lay outside the bounds of the superview. You can turn on Clip Sub-
views if you really need it for some reason, but it is off by default for the sake of performance.

The final checkbox in this section, Autoresize Subviews, tells iPhone to resize any subviews if
this view is resized. Leave this checked. Since we don’t allow the view to be resized, this set-
ting does not really matter.

24594ch04.indd 66 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 67

Figure 4-9. Clip subviews in action: The top view is the default
setting, with Clip Subviews turned off. The bottom shows what
happens when you turn on Clip Subviews.

The Interaction Checkboxes
The last two checkboxes have to do with user interaction. The first checkbox, User Interaction
Enabled, specifies whether the user can do anything at all with this object. For most controls,
this box will be checked, because if it’s not, the control will never be able to trigger action
methods. However, labels and image views default to unchecked, because they are very
often used just for the display of static information. Since all we’re doing here is displaying a
picture on the screen, there is no need to turn this on.

The last checkbox is Multiple Touch, and it determines whether this control is capable of
receiving multitouch events. Multitouch events allows complex gestures like the pinch
gesture used to zoom in many iPhone applications. We’ll talk more about gestures and mul-
titouch events in Chapter 13. Since this image view doesn’t accept user interaction at all,
there’s no reason to turn on multitouch events, so leave it at the default value.

Adding the Text Fields
Once you have your image view all finished, grab a text field from the library, and drag it
over to the View window. Place it underneath the image view, using the blue guides to align

24594ch04.indd 67 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun68

it with the right margin (see Figure 4-10). A horizontal blue guideline will appear just above
the text field when you move it very close to the bottom of your image. That guideline tells
you when you are as close as you should possibly be to another object. You can leave your
text field there for now, but to give it a balanced appearance, consider moving the text field
just a little further down. Remember, you can always come back to Interface Builder and
change the position and size of interface elements without having to change code or rees-
tablish connections.

After you drop the text field, grab a label from the library, and drag that over so it is aligned
with the left margin of the view and aligned vertically with the text field you placed earlier.
Note that multiple blue guidelines will pop up as you move the label around, making it
easy to align the label to the text field using the top, bottom, middle, or text baseline. We’re
going to align the label and the text field using the text baseline guide, which will draw a
line from the bottom of the label’s text going through the text field, as shown in Figure 4-11.
If the blue guideline is being drawn through the middle of the label’s text, you’re on the cen-
ter guideline, not the text baseline guide. Using the text baseline guide will cause the label’s
text label and the text that the user will type into the text field to be at the same vertical
position on the screen.

Figure 4-10. Placing the text field. Notice the Figure 4-11. Aligning the label and text
blue guideline just above the text field that field using the baseline guide
tells you not to move the text field any closer
to the image.

24594ch04.indd 68 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 69

Double-click the label you just dropped, change it to read Name: instead of Label, and press
the return key to commit your changes. Next, drag another text field from the library to the
view, and use the guidelines to place it below the first text field (see Figure 4-12).

Once you’ve placed the second text field, grab another label from the library, and place it on
the left side, below the existing label. Use the blue text baseline guide again to align it with
the second text field. Double-click the new label, and change it to read Number:.

Now, let’s expand the size of the bottom text field to the left. Single-click the bottom text
field, and drag the left resize dot to the left until a blue guideline appears to tell you that you
are as close as you should ever be to the label (see Figure 4-13).

Now expand the top text field the same way so that it matches the bottom one in size. Note
that we did the bottom one first because the bottom label is the larger of the two labels.

We’re basically done with the text fields except for one small detail. Look back at Figure 4-5.
See how the Name: and Number: are right-aligned? Right now, ours are both against the left
margin. To align the right sides of the two labels, click the Name: label, hold down the shift
key, and click the Number: label so both labels are selected. From the Alignment submenu of
the Layout menu, select Align Right Edges.

Figure 4-12. Adding the second text field Figure 4-13. Expanding the size of the

bottom text field

24594ch04.indd 69 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun70

When you are done, the interface should look very
much like the one shown in Figure 4-5. The only differ-
ence is the light gray text in each text field. We’ll add
that now.

Click somewhere where there’s no control to deselect
the two labels, then select the top text field and press
⌘1 to bring up the inspector (see Figure 4-14).

The Text Field Inspector Settings
Text fields are one of the most complex controls on
the iPhone as well as being one of the most commonly
used. Let’s look at the topmost section of the inspector
first. In the first field, Text, you can set a default value for
this field. Whatever you type in this field will show up in
the text field when your application launches.

The second field, Placeholder, allows you to specify a
bit of text that will be displayed in gray inside the text
field, but only when the field has no value. You can use
a placeholder instead of a label if space is tight, or you
can use it to clarify what the user should type into this
field.

Type in the text Type in a name as the placeholder for
this text field.

The next two fields are used only if you need to cus-
tomize the appearance of your text field, which is
completely unnecessary and actually ill-advised the
vast majority of the time. Users expect text fields to
look a certain way. As a result, we’re going to skip right
over the Background and Disabled fields and leave them
blank.

Below these fields are three buttons for controlling the
alignment of the text displayed in the field. We’ll leave
this field at the default value of left-aligned (the left-
most button). Next to that is a field that lets us specify
the color of the text field’s text. Again, we’ll leave it at
the default value of black.

Figure 4-14. The inspector for a text
field showing the default values

24594ch04.indd 70 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 71

Next are four buttons labeled Border. These allow you to change the way the text field’s edge
will be drawn. You can feel free to try all four different styles, but the default value is the
rightmost button, and it creates the text field style that users are most accustomed to seeing
for normal text fields in an iPhone application, so when you’re done playing, set it back to
that one.

The Clear When Editing Begins checkbox specifies what happens when the user touches this
field. If this box is checked, any value that was previously in this field will get deleted, and
the user will start with an empty field. If this box is unchecked, the previous value will stay in
the field, and the user will be able to edit it. Uncheck this checkbox.

The Adjust to Fit checkbox specifies whether the size of the text should shrink if the text field
is reduced in size. Adjusting to fit will keep the entire text visible in the view even if the text
would normally be too big to fit in the allotted space. To the right of the checkbox is a text
field that allows you to specify a minimum text size. No matter the size of the field, the text
will not be resized below that minimum size. Specifying a minimum size will allow you to
make sure that the text doesn’t get too small to be readable.

Text Input Traits
The next section defines how the keyboard will look and behave when this text field is being
used. Since we’re expecting a name, let’s change the Capitalize drop-down to Words, which
will cause every word to be automatically capitalized, which is what you typically want with
names. Let’s also change the value of the Return Key pop-up to Done and leave all the other
text input traits at their default values. The Return Key is the key on the lower right of the key-
board, and its label changes based on what you’re doing. If you are entering text into Safari’s
search field, for example, then it says Google. In an application like this, where there text
fields share the screen with other controls, Done is the right choice.

If the Auto-enable Return Key checkbox is checked, the return key is disabled until at least
one character is typed into the text field. Leave this unchecked because we want to allow
the text field to remain empty if the user so chooses.

The Secure checkbox specifies whether the characters being typed are displayed in the text
field. You’d check this checkbox if this text field was being used as a password field. Leave it
unchecked.

And the Rest . . .
The next section allows you to set general control attributes inherited from UIControl, but
these generally don’t apply to text fields and, with the exception of the Enabled checkbox,
won’t affect the field’s appearance. We want to leave these text fields enabled so that the
user can interact with them, so just leave everything here as is.

24594ch04.indd 71 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun72

The last section on the inspector should look familiar to you. It’s identical to the section of
the same name on the image view inspector we looked at a few minutes ago. These are
attributes inherited from the UIView class, and since all controls are subclasses of UIView,
they all share this section of attributes. Note that for a text field, you do not want to check
Opaque, because doing so will make the entered text unreadable. In fact, you can leave all
the values in this section exactly as they are.

Set the Attributes for the Second Text Field
Next, single-click the second text field in the View window, and return to the inspector. In
the Placeholder field, type Type in a number, and uncheck Clear When Editing Begins. In the
section called Text Input Traits, click the Keyboard Type pop-up menu. Since we want the user
to enter numbers only, not letters, go ahead and select Number Pad. By doing this, the users
will be presented with a keyboard containing only numbers, meaning they won’t be able to
enter alphabetical characters, symbols, or anything besides numbers. We don’t have to set
the Return Key value for the numeric keypad, because that style of keyboard doesn’t have a
return key, so everything else on the inspector can stay at the default values.

Connecting Outlets
OK, for this first part of the interface, all that’s left is hooking
up our outlets. Control-drag from File’s Owner to each of the
text fields, and connect them to their corresponding outlets.
Save the nib file once you’ve connected both text fields to
their corresponding outlets, and then go back to Xcode.

Build and Run
Let’s see how it works, shall we? Select Build and Run from
Xcode’s Build menu. Your application should come up in the
iPhone simulator. Click the Name text field. The keyboard
should appear (see Figure 4-15). Now click the Number field,
and the keyboard should change to the number pad. Cocoa
Touch gives us all this functionality for free just by adding
text fields to our interface.

Woo-hoo! But, there’s a little problem. How do you get the
keyboard to go away? Go ahead and try; we’ll wait right
here while you do.

Figure 4-15. The keyboard
comes up automatically when
you touch the text field.

24594ch04.indd 72 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 73

Making the Keyboard Go Away When Done Is Tapped
Because the keyboard is software based, rather than being a physical keyboard, we need to
take a few extra steps to make sure the keyboard goes away when the user is done with it.
When the user taps the Done button, a Did End On Exit event will be generated, and at that
time, we need to tell the text field to give up control so that the keyboard will go away. In
order to do that, we need to add an action method to our controller class, so add the follow-
ing line of code to Control_FunViewController.h:

#import <UIKit/UIKit.h>

@interface Control_FunViewController : UIViewController {
 UITextField *nameField;
 UITextField *numberField;
}
@property (nonatomic, retain) IBOutlet UITextField *nameField;
@property (nonatomic, retain) IBOutlet UITextField *numberField;
- (IBAction)textFieldDoneEditing:(id)sender;
@end

Now switch over to Control_FunViewController.m, and we’ll implement this method. Only one
line of code is needed in this new action method to make it work. Add the following method
to Control_FunViewController.m:

- (IBAction)textFieldDoneEditing:(id)sender{
 [sender resignFirstResponder];
}

We mentioned the concept of a first responder earlier and said that it’s the control that the
user is currently interacting with. Here, we tell any control that triggers this action to give up
first responder status. When a text field yields first responder status, the keyboard associated
with it goes away.

Save both of the files you just edited. Let’s just hop back over to Interface Builder and trigger
this action from both of our text fields.

Once you’re back in Interface Builder, single-click the Name text field, and press ⌘2 to bring
up the connections inspector. This time, we don’t want the Touch Up Inside event that we
used in the previous chapter. Instead, we want Did End On Exit since that is the event that
will fire when the user taps the Done button on iPhone’s keyboard. Drag from the circle next
to Did End On Exit to the File’s Owner icon, and connect it to the textFieldDoneEditing:
action. Repeat with the other text field, and save. Let’s go back to Xcode to build and run
again.

24594ch04.indd 73 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun74

TIP
If you drag from Did End On Exit but the File’s Owner icon does not highlight, signifying you can complete
the drag, chances are that you did not save your source code before you switched over to Interface Builder.
Go back to Xcode, save, and try again. If it still doesn’t work, try quitting Interface Builder and Xcode and
relaunching both. That should do the trick!

When the simulator appears, click the name field, type in
something, and then tap the Done button. Sure enough, the
keyboard drops away, just as you expect it to. All right! What
about the number field, though? Um, where’s the Done but-
ton on that one (see Figure 4-16)?

Well, crud! Not all keyboard layouts feature a Done button.
We could force the user to tap the name field and then tap
Done, but that’s not very user friendly, is it? And we most
definitely want our application to be user friendly.

Can you recall what Apple’s iPhone applications do in this
situation? Well, in most places where there are text fields,
tapping anywhere in the view where there’s no active con-
trol will cause the keyboard to go away. How do we do that?

The answer is probably going to surprise you because of
its simplicity. Our view controller has a property called
view that it inherited from UIViewController. This view
property corresponds to the view icon in the nib file. This
property points to an instance of UIView in the nib that acts
as a container for all the items in our user interface. It has
no appearance in the user interface, but it covers the entire iPhone window, sits “below” all
of the other user interface objects, and is sometimes referred to as a nib’s container view
because its main purpose is to simply hold other views and controls. For all intents and pur-
poses, the container view is the background of our user interface.

In Interface Builder, we can change the class of the object that view points to so that its
underlying class is UIControl instead of UIView. Because UIControl is a subclass of UIView,
it is perfectly appropriate for us to connect our view property to an instance of UIControl.
Remember when a class subclasses another object, it is just a more specific version of that
class, so a UIControl is a UIView. If we simply change the instance that gets created from
UIView to UIControl, we gain the ability to trigger action methods.

Figure 4-16. The numeric key-
pad doesn’t have a Done button

24594ch04.indd 74 6/25/09 4:17:44 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 75

Before we do that, though, we have to create an action method that will be called when the
background is tapped.

Touching the Background to Close the Keyboard
Go to Xcode if you’re not already there. We need to add one more action to our controller
class. Add the following line to your Control_FunViewController.h file:

#import <UIKit/UIKit.h>

@interface Control_FunViewController : UIViewController {
 UITextField *nameField;
 UITextField *numberField;
}
@property (nonatomic, retain) IBOutlet UITextField *nameField;
@property (nonatomic, retain) IBOutlet UITextField *numberField;
- (IBAction)textFieldDoneEditing:(id)sender;
- (IBAction)backgroundTap:(id)sender;
@end

Save the header file; switch over to the implementation file, and add this code, which simply
tells both text fields to yield first responder status if they have it. It is perfectly safe to call
resignFirstResponder on a control that is not the first responder, so we can safely call it
on both text fields without having to check whether either is the first responder.

- (IBAction)backgroundTap:(id)sender {
 [nameField resignFirstResponder];
 [numberField resignFirstResponder];
}

TIP
You’ll be switching between header and implementation files a lot as you code. Fortunately, Xcode has a
key combination that will switch you between these files quickly. The default key combination is ⌥⌘⇧
(option-command-up arrow), although you can change it to anything you want using Xcode’s preferences.

Save this file, and go back to Interface Builder. We now need to change the underlying class
of our nib’s view. If you look at the nib’s main window (Figure 4-17), you’ll see that there are
three icons in that view. The third one, called View, is our nib’s main view that holds all the
other controls and views as subviews.

Single-click the icon called View, which represents our nib’s container view. Press ⌘4 to bring
up the identity inspector (Figure 4-18). This is where we can change the underlying class of
any object instance in Interface Builder.

24594ch04.indd 75 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun76

Figure 4-17. The nib’s main window has three Figure 4-18. The identity inspector allows
icons. The third one, labeled View, is our nib’s you to change the underlying class of
content view. any object instance in a nib.

The field labeled Class currently says UIView. Change it
to read UIControl. All controls that are capable of trig-
gering action methods are subclasses of UIControl, so
by changing the underlying class, we have just given
this view the ability to trigger action methods. You can
verify this by pressing ⌘2 to bring up the connections
inspector (Figure 4-19). You should now see all the
events that you saw before when you were connecting
buttons to actions in the previous chapter.

Drag from the Touch Down event to the File’s Owner
icon, and choose the backgroundTap: action. Now,
touches anywhere in the view without an active control
will trigger our new action method, which will cause
the keyboard to retract.

Figure 4-19. By changing the class
of our view from UIView to UIControl,
we gain the ability to trigger action
methods on any of the standard
events.

24594ch04.indd 76 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 77

NOTE
You might be wondering why we selected Touch Down instead of Touch Up Inside, like we did in the previ-
ous chapter. The answer is that the background isn’t a button. It’s not a control in the eyes of the user, so it
wouldn’t occur to most users to try to drag their finger somewhere to cancel the action.

Save the nib, and let’s go back and try it. Compile and run your application again. This time,
the keyboard should disappear not only when the Done button is tapped but also when you
click anywhere that’s not an active control, which is the behavior that your user will expect.

Excellent! Now that we have this section all squared away, are you ready to move onto the
next group of controls?

Implementing the Slider and Label
Now that we have the text fields done, let’s implement the slider. Remember, as the user
moves the slider, the label will change to reflect the slider’s value.

Determining Outlets
We’re going to add two more items to the interface: a slider and a label that will show the
current value of the slider. Want to take a stab at figuring out how many outlets we’ll need?
Well, the label will need to be changed programmatically when the slider changes, so we’re
going to need an outlet for it. What about the slider?

The slider will trigger an action, and when it does, that action method will receive a pointer
to the slider in the sender argument. We’ll be able to retrieve the slider’s value from sender,
so we won’t need an outlet to get the slider’s value. So do we need an outlet for the slider at
all? In other words, do we need access to the slider’s value outside of the action method it
will call?

In a real application, you very often would. Here, since we have another control that will
have the same value as the slider and already has an outlet, there’s really no reason to have
one for the slider itself. Remember that you want to get in the habit of being memory
cautious when programming for iPhone. Even though a pointer is a minimal amount of
memory, why use it if we don’t need it, and why clutter up our code with extra stuff we aren’t
going to use?

24594ch04.indd 77 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun78

Determining Actions
Figuring out the actions for this pair of controls is straightforward. We need one for the slider
to call when it is changed. The label is static, and the user can’t do anything with it directly,
so it won’t need to trigger any actions.

Adding Outlets and Actions
Let’s declare one more outlet and one more action in our Control_FunViewController.h file,
like so:

#import <UIKit/UIKit.h>

@interface Control_FunViewController : UIViewController {
 UITextField *nameField;
 UITextField *numberField;
 UILabel *sliderLabel;
}
@property (nonatomic, retain) IBOutlet UITextField *nameField;
@property (nonatomic, retain) IBOutlet UITextField *numberField;
@property (nonatomic, retain) IBOutlet UILabel *sliderLabel;
- (IBAction)textFieldDoneEditing:(id)sender;
- (IBAction)backgroundTap:(id)sender;
- (IBAction)sliderChanged:(id)sender;
@end

Since we know exactly what our method needs to do, let’s switch to Control_
FunViewController.m to add our property synthesizer and write our sliderChanged:
method:

#import "Control_FunViewController.h"

@implementation Control_FunViewController
@synthesize nameField;
@synthesize numberField;
@synthesize sliderLabel;
- (IBAction)sliderChanged:(id)sender {
 UISlider *slider = (UISlider *)sender;
 int progressAsInt = (int)(slider.value + 0.5f);
 NSString *newText = [[NSString alloc] initWithFormat:@"%d",
 progressAsInt];
 sliderLabel.text = newText;
 [newText release];
}
- (IBAction)backgroundTap:(id)sender {
...

24594ch04.indd 78 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 79

Let’s talk for a second about what’s going on in the sliderChanged: method. The first thing
we do is cast sender to a UISlider *. This simply makes our code more readable and lets
us avoid having to typecast sender every time we use it. After that, we get the value of the
slider as an int, add 0.5 in order to round it to the nearest integer, and use that integer to
create a new string that we use to set the label’s text. Since we allocated newText, we are
responsible for releasing it, so we do that in the last line of code in the method. Simple
enough, right?

Speaking of being responsible for memory, since we added the sliderLabel property with
the retain keyword, we have to make sure we release it. To do that, add the following line of
code to your dealloc method:

- (void)dealloc {
 [nameField release];
 [numberField release];
 [sliderLabel release];
 [super dealloc];
}

We’re done here, so let’s go add the objects to our interface. Save your changes, and
move on.

Adding the Slider and Label
You know the routine by now. Double-click Control_FunViewController.xib, or if it’s already
open, just go back to Interface Builder.

Before we add the slider, let’s add a little bit of breathing room to our design. The blue
guidelines we used to determine the spacing between the top text field and the image
above it are really suggestions for minimum proximity. In other words, the blue guidelines
tell you, “don’t get any closer than this.” Drag the two text fields and their labels down a bit,
using Figure 4-1 as a guide. Now let’s add the slider.

From the library, bring over a slider and arrange it below the number text field taking up
most but not all of the horizontal space. Leave a little room to the left for the label. Again,
use Figure 4-1 as a guide. Single-click the newly added slider to select it, and then press ⌘1
to go back to the inspector if it’s not already visible. The inspector should look like the one
shown in Figure 4-20.

A slider lets you choose a number in a given range, and here, we can set the range and the
initial value in Interface Builder. Put in a minimum value of 1, a maximum value of 100, and
an initial value of 50. That’s all we need to worry about for now.

Bring over a label and place it next to the slider, using the blue guidelines to align it vertically
with the slider and to align its left edge with the left margin of the view (see Figure 4-21).

24594ch04.indd 79 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun80

Figure 4-20. The inspector showing Figure 4-21. Placing the slider’s label
default attributes for a slider

Double-click the newly placed label, and change its text from Label to 100. This is the larg-
est value that the slider can hold, and we can use that to determine the correct width of
the slider. Since “100” is shorter than “Label,” you should resize the label by grabbing the
right-middle resize dot and dragging to the left. Make sure you stop resizing before the text
starts to get smaller. If it does start to get smaller, bring the resize dot back to the right until
it returns to its original size. You can also use the size-to-fit option we discussed earlier by
pressing ⌘= or selecting Size to Fit from the Layout Menu. Next, resize the slider by single-
clicking the slider to select it and dragging the left resize dot to the left until the blue guides
indicate that you should stop.

Now double-click the label again, and change its value to 50. That is the starting value of the
slider, and we need to change it back to make sure that the interface looks correct at launch
time; once the slider is used, the code we just wrote will make sure the label continues to
show the correct value.

24594ch04.indd 80 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 81

Connecting the Actions and Outlets
All that’s left to do with these two controls is to connect the outlet and action. Well, what are
you waiting for? You know how to do that. Well, in case you’ve forgotten, control-drag from
the File’s Owner icon to the label you just added, and select sliderLabel. Next, single-click
the slider, press ⌘2 to bring up the connections inspector, and drag from—hmm, we don’t
want Touch Up Inside, this time, do we? How about Value Changed? That sounds like a good
one, huh? Yep, go ahead and drag from that one to File’s Owner, and select sliderChanged.

Save the nib; go back to Xcode; and try out the slider. As you move it, you should see the
label’s text change in real time. Another piece falls into place. Now, let’s look at implement-
ing the switches.

Implementing the Switches, Button, and
 Segmented Control
Back to Xcode we go once again. Getting dizzy yet? This back and forth may seem a bit
strange, but it’s fairly common to bounce around among Interface Builder, Xcode, and the
iPhone simulator while you’re developing.

Our application is going to have two switches, which are small controls that can only have
two states: on and off. We’ll also add a segmented control to hide and show the switches.
Let’s implement those next.

Determining Outlets
We won’t need an outlet for the segmented control, since we won’t be changing its attri-
butes or doing anything with it outside of the action method it calls. We will need some
outlets for the switches, however. Since changing the value of either switch will trigger a
change in the value of the other switch, we’ll need to change the value of the switch that
didn’t trigger the action method, so we won’t be able to rely on using sender. We also need
another outlet. We need one for another view that we’re going to add. Remember that we’re
going to hide and show these switches and their labels whenever the segmented control is
touched.

We could hide each of the items individually, but the easiest way to group multiple controls
to hide and unhide them together is to use a UIView as a common parent for the items that
need to be hidden or shown together. You’ll see how that works in Interface Builder in a
moment, but first, we need to create the outlet for the parent view in addition to the outlets
for the two switches.

24594ch04.indd 81 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun82

Determining Actions
The segmented control is going to need to trigger an action method that will hide or show
the view containing the switches and their labels. We’re also going to need an action that
will fire when either switch is tapped. We’ll have both switches call the same action method,
just as we did with the two buttons in Chapter 3. In Control_FunViewController.h, go ahead
and add three outlets and two actions, like so:

#import <UIKit/UIKit.h>
#define kSwitchesSegmentIndex 0
@interface Control_FunViewController : UIViewController {
 UITextField *nameField;
 UITextField *numberField;
 UILabel *sliderLabel;
 UISwitch *leftSwitch;
 UISwitch *rightSwitch;
 UIButton *doSomethingButton;
}
@property (nonatomic, retain) IBOutlet UITextField *nameField;
@property (nonatomic, retain) IBOutlet UITextField *numberField;
@property (nonatomic, retain) IBOutlet UILabel *sliderLabel;
@property (nonatomic, retain) IBOutlet UISwitch *leftSwitch;
@property (nonatomic, retain) IBOutlet UISwitch *rightSwitch;
@property (nonatomic, retain) IBOutlet UIButton *doSomethingButton;
- (IBAction)textFieldDoneEditing:(id)sender;
- (IBAction)backgroundTap:(id)sender;
- (IBAction)sliderChanged:(id)sender;
- (IBAction)toggleControls:(id)sender;
- (IBAction)switchChanged:(id)sender;
- (IBAction)buttonPressed;
@end

In the code we’ll be writing in a minute, we’re going to refer to a UISegmentedControl prop-
erty named selectedSegmentIndex, which tells us which segment is currently selected.
That property is an integer number. The Switches segment will have an index of 0. Rather
than stick that 0 in our code, the meaning of which we might not remember a few months
from now, we define the constant kSwitchesSegmentIndex to use instead, which will make
our code more readable.

Switch over to Control_FunViewController.m, and add the following code:

#import "Control_FunViewController.h"

@implementation Control_FunViewController
@synthesize nameField;
@synthesize numberField;
@synthesize sliderLabel;

24594ch04.indd 82 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 83

@synthesize leftSwitch;
@synthesize rightSwitch;
@synthesize doSomethingButton;
- (IBAction)toggleControls:(id)sender {
 if ([sender selectedSegmentIndex] == kSwitchesSegmentIndex)
 {
 leftSwitch.hidden = NO;
 rightSwitch.hidden = NO;
 doSomethingButton.hidden = YES;
 }
 else
 {
 leftSwitch.hidden = YES;
 rightSwitch.hidden = YES;
 doSomethingButton.hidden = NO;
 }
}
- (IBAction)switchChanged:(id)sender {
 UISwitch *whichSwitch = (UISwitch *)sender;
 BOOL setting = whichSwitch.isOn;
 [leftSwitch setOn:setting animated:YES];
 [rightSwitch setOn:setting animated:YES];
}
- (IBAction)buttonPressed {
 // TODO: Implement Action Sheet and Alert
}
- (IBAction)sliderChanged:(id)sender {
...

The first method, toggleControls:, is called whenever the segmented control is tapped.
In this method, we look at the selected segment, and either hide the switches and show the
button, or show the switches and hide the button, as appropriate.

The second method we just added, switchChanged:, gets called whenever one of the two
switches is tapped. In this method, we simply grab the value of sender, which represents
the switch that was pressed, and use that value to set both switches. Now, sender is always
going to be either leftSwitch or rightSwitch, so you might be wondering why we’re
setting them both. It’s less work to just set the value of both switches every time than to
determine which switch called us and only set the other one. Whichever switch called this
method will already be set to the correct value, and setting it again to that same value won’t
have any affect.

Notice that when we change the value of the switch, we pass a parameter called animated.
This lets us specify whether the button should slide over slowly, just as if somebody had
pressed it, or if it should just be moved instantly to the new position. We specified YES
because having the switches slide over looks cool, and iPhone users have come to expect

24594ch04.indd 83 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun84

that kind of visual feedback. You can try specifying NO if you want to see the difference, but
unless you have good reason, it’s generally a good idea to animate changes made program-
matically to the user interface so the user is aware of them.

The third new method, buttonPressed, gets called when the button is pressed. We’re not
going to implement this method quite yet, so we added a special comment here to remind
ourselves to come back to this method. After typing this special comment, if you select the
function method at the top of the editor pane (Figure 4-22), you’ll see that we now have a
reminder every time we use the function pop-up that we need to come back here and finish
this.

Figure 4-22. Comments that begin with // TODO: will show up on the function pop-up
menu at the top of the Editor pane.

Releasing the Outlets
Since we declared three new outlets, we need to release those outlets in our
 dealloc method. Add the following three lines to the existing dealloc method in
Control_FunViewController.m:

- (void)dealloc {
 [nameField release];
 [numberField release];
 [sliderLabel release];
 [leftSwitch release];
 [rightSwitch release];
 [doSomethingButton release];
 [super dealloc];
}

24594ch04.indd 84 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 85

Adding the Switches, Button, and Segmented Control
Next, we’re going to tackle the segmented control and the switches and button that it tog-
gles between. Back in Interface Buidler, drag a segmented control from the library (see
Figure 4-23) and place it on the View window, a little below the slider.

Expand the width of the segmented control so that
it stretches from the view’s left margin to its right
margin, as it does in Figure 4-24. Place your cur-
sor over the word First on the segmented control
and double-click. This should cause the segment’s
title to become editable, so change it from First
to Switches, as shown in Figure 4-24. After doing
that, repeat the process with the Second segment;
rename it Button.

Figure 4-23. The Segmented Control
option in the library

Adding Two Labeled Switches
Grab a switch from the library, and place it on the view. Place it below the segmented con-
trol, against the left margin (Figure 4-25). Drag a second switch and place it against the right
margin, aligned vertically with the first switch.

TIP
Holding down the option key and dragging an object in Interface Builder will create a copy of that item.
When you have many instances of the same object to create, it can be faster to drag only one object from
the library and then option-drag as many copies as you need.

Figure 4-24. Renaming the segments

24594ch04.indd 85 6/25/09 4:17:45 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun86

Connecting the Switch Outlets
and Actions
Before we add the button, we’re going to connect
the switches to the leftSwitch and right-
Switch outlets. The button that we’ll be adding in
a moment will actually sit on top of the switches,
making it harder to control-drag to and from
them, so we want to do the switches’ connections
before we add the button. Since the button and
the switches will never be visible at the same time,
having them in the same physical location won’t
be a problem.

Control-drag from File’s Owner to each of the
switches, and connect them to the appropriate
leftSwitch or rightSwitch outlet.

Now select the left switch again by single-clicking
it, and press ⌘2 to bring up the connections
inspector. Drag from the Value Changed event to
the File’s Owner icon, and select the switch-
Changed: action. Repeat with the other switch.

Single-click the segmented control, and look
for the Value Changed event on the connections
inspector. Drag from the circle next to it to the
File’s Owner icon, and select the toggleControls:
action method.

Adding the Button
Next, drag a Round Rect Button from the library
to your view. Add this one right on top of the left-
most button, aligning it with the left margin and
vertically aligning its center with the two switches
(Figure 4-26).

Now grab the right center resize handle and drag
all the way to the right until you reach the blue
guideline that indicates the right margin. The but-
ton should completely cover the two switches
(Figure 4-27).

Figure 4-25. Adding the switches to the
view

Figure 4-26. Adding a round rect button
on top of the existing switches

24594ch04.indd 86 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 87

Double-click the button and give it a label of Do
Something. Because the segmented control will
start with the Switches segment selected, we need
to hide this button. Press ⌘1 to bring up the attri-
bute inspector and click the Hidden checkbox down
in the bottommost section.

Connecting the Buttons Outlets
and Actions
Control-drag from File’s Owner to the new button,
and select the doSomethingButton outlet. Then,
press ⌘2 to go back to the connections inspector.
Drag from the circle next to the Touch Up Inside
event to File’s Owner, and select the buttonPressed
action. Now your button is all wired up.

Save your work.

Go back to Xcode, and take the application for a
test drive. The segmented control should now be
live. When you tap the Switches segment, the pair
of switches should appear. Tap one of the switches,
and both switches should toggle. Tap the Button segment, and the switches should be be
hidden, replaced by the Do Something button. Tapping the button doesn’t do anything yet,
because we haven’t implemented that particular method. Let’s do that now.

Implementing the Action Sheet and Alert
Action sheets and alerts are both used to provide the user with feedback.

Action sheets are used to force the user to make a choice between two or more items. The
action sheet comes up from the bottom of the screen and displays a series of buttons for
the user to select from (Figure 4-3). The user is unable to continue using the application until
they have tapped one of the buttons. Action sheets are often used to confirm a potentially
dangerous or irreversible action such as deleting an object.

NOTE
A view that forces the user to make a choice before they are allowed to continue using their application is
known as a modal view.

Figure 4-27. The round rect button,
once placed and resized, will completely
obscure the two switches.

24594ch04.indd 87 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun88

Alerts appear as a blue rounded rectangle in the middle of the screen (shown earlier in
Figure 4-4). Just like action sheets, alerts force users to respond before they are allowed to
continue using their application. Alerts are used more to inform the user that something
important or out of the ordinary has occurred and, unlike action sheets, alerts may be
presented with only a single button, though you have the option of presenting multiple
 buttons if more than one response is appropriate.

Conforming to the Action Sheet Delegate Method
Remember back in Chapter 2 when we talked about the application delegate? Well,
 UIApplication is not the only class in Cocoa Touch that uses delegates. In fact, delegation
is a very common design pattern in Cocoa Touch. Action sheets and alerts both use del-
egates so that they know what object to notifiy when they’re done being displayed. In our
application, we’re going to need to get notified when the action sheet is dismissed. We don’t
need to know when the alert gets dismissed because we’re just using it to notify the user of
something, not to actually solicit a choice.

In order for our controller class to act as the delegate for an action sheet, it needs to con-
form to a protocol called UIActionSheetDelegate. We do that by adding the name of the
protocol in angle backets after the superclass in our class declaration. Do that by adding the
following code to Control_FunViewController.h:

#import <UIKit/UIKit.h>
#define kSwitchesSegmentIndex 0
@interface Control_FunViewController : UIViewController
 <UIActionSheetDelegate> {
 UITextField *nameField;
 UITextField *numberField;
 UILabel *sliderLabel;
...

Showing the Action Sheet
Let’s switch over to Control_FunViewController.m and implement the button’s action
method. We actually need to implement another method in addition to our existing
action method because, as we discussed a moment ago, we need to implement the
 UIActionSheetDelegate method that the action sheet will use to notify us that it has
been dismissed.

Here are the changes you need to make to the buttonPressed method in Control_
FunViewController.m. Type it in, and then we’ll talk about what’s going on:

24594ch04.indd 88 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 89

- (IBAction)buttonPressed {

 // TODO: Implement Action Sheet and Alert
 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@"Are you sure?"
 delegate:self
 cancelButtonTitle:@"No Way!"
 destructiveButtonTitle:@"Yes, I'm Sure!"
 otherButtonTitles:nil];
 [actionSheet showInView:self.view];
 [actionSheet release];
}

Next, add this method to Control_FunViewController.m, just below the buttonPressed
method:

- (void)actionSheet:(UIActionSheet *)actionSheet
didDismissWithButtonIndex:(NSInteger)buttonIndex
{
 if (buttonIndex != [actionSheet cancelButtonIndex])
 {
 NSString *msg = nil;

 if (nameField.text.length > 0)
 msg = [[NSString alloc] initWithFormat:
 @"You can breathe easy, %@, everything went OK.",
 nameField.text];
 else
 msg = @"You can breathe easy, everything went OK.";

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Something was done"
 message:msg
 delegate:self
 cancelButtonTitle:@"Phew!"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [msg release];
 }
}

What, exactly, did we do there? Well, first, in the action method we allocated and initialized
a UIActionSheet object, which is the object that represents an action sheet (in case you
couldn’t puzzle that one out for yourself):

24594ch04.indd 89 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun90

 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@"Are you sure?"
 delegate:self
 cancelButtonTitle:@"No Way!"
 destructiveButtonTitle:@"Yes, I'm Sure!"
 otherButtonTitles:nil];

The initializer method took a number of parameters. Let’s look at each of them in turn. The
first parameter is the title to be displayed. If you look at Figure 4-3, you can see how the title
we’re supplying will be displayed at the top of the action sheet.

The next argument is the delegate for the action sheet. The action sheet’s delegate will be
notified when a button on that sheet has been tapped. More specifically, the delegate’s
actionSheet:didDismissWithButtonIndex: method will be called. By passing self as the
delegate parameter, we ensure that our version of actionSheet:didDismissWithButton
Index: will be called.

Next, we pass in the title for the button that users will tap to indicate they do not want to
proceed. All action sheets should have a cancel button, though you can give it any title that
is appropriate to your situation. You do not want to use an action sheet if there is no choice
to be made. In situations where you want to notify the user without giving a choice of
options, an alert sheet is more appropriate. We’ll see how to use alert sheets in a bit.

The next parameter is the destructive button, and you can think of this as the “yes, please go
ahead” button, though once again, you can assign any title to it that is appropriate to your
situation.

The last parameter allows us to specify any number of other buttons that we may want
shown on the sheet. This final argument can take a variable number of values, which is one
of the nice features of the Objective-C language. If we had wanted two more buttons on our
action sheet, we could have done it like this:

 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@"Are you sure?"
 delegate:self
 cancelButtonTitle:@"No Way!"
 destructiveButtonTitle:@"Yes, I'm Sure!"
 otherButtonTitles:@"Foo", @"Bar", nil];

This code would have resulted in an action sheet with four buttons. You can pass as many
arguments as you want in the otherButtonTitles parameter, as long as you pass nil as
the last one, but there is, of course, a practical limitation on how many buttons you can have
based on the amount of screen space available.

24594ch04.indd 90 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 91

After we create the action sheet, we tell it to show itself:

 [actionSheet showInView:self.view];

On an iPhone, action sheets always have a parent, which must be a view that is currently vis-
ible to the user. In our case, we want the view that we designed in Interface Builder to be the
parent, so we use self.view. Note the use of Objective-C dot notation. self.view is equiv-
alent to saying [self view], using the accessor to return the value of our view property.

Why didn’t we just use view, instead of self.view? view is a private instance variable and
must be accessed via the accessor.

Finally, when we’re all done, we release the action sheet. Don’t worry; it will stick around
until the user has tapped a button.

The Action Sheet Delegate and Creating an Alert
Well, that wasn’t so hard, was it? In just a few lines of code, we showed an action sheet and
required the user to make a decision. iPhone will even animate the sheet for us without
requiring us to do any additional work. Now, we just need to find out which button the user
tapped. The other method that we just implemented, actionSheet:didDismissWith
ButtonIndex, is one of the UIActionSheetDelegate methods, and since we specified self
as our action sheet’s delegate, this method will automatically get called by the alert sheet
when a button is tapped.

The argument buttonIndex will tell us which button was actually tapped. But, how do we
know which button index refers to the cancel button and which one refers to the destruc-
tive button? Well, fortunately, the delegate method receives a pointer to the UIActionSheet
object that represents the sheet, and that action sheet object knows which button is the
cancel button. We just need look at one of its properties, cancelButtonIndex:

if (buttonIndex != [actionSheet cancelButtonIndex])

This line of code makes sure the user didn’t tap the cancel button. Since we only gave the
user two options, we know that if they didn’t tap the cancel button, they must have tapped
the destructive button, so it’s OK to proceed. Once we know the user didn’t cancel, the first
thing we do is create a new string that will be displayed to the user. In a real application,
here you would do whatever processing the user requested. We’re just going to pretend we
did something, and notify the user using an alert.

If the user has entered a name in the top text field, we’ll grab that, and we’ll use it in the mes-
sage that we’re going to display in the alert. Otherwise, we’ll just craft a generic message to
show:

24594ch04.indd 91 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun92

 NSString *msg = nil;

 if (nameField.text.length > 0)
 msg = [[NSString alloc] initWithFormat:
 @"You can breathe easy, %@, everything went OK.",
 nameField.text];
 else
 msg = @"You can breathe easy, everything went OK.";

The next lines of code are going to look kind of familiar. Alerts and actions sheets are created
and used in a very similar manner:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Something was done"
 message:msg
 delegate:nil
 cancelButtonTitle:@"Phew!"
 otherButtonTitles:nil];

Again, we pass a title to be displayed, this time along with a more detailed message, which
is that string we just created. Alerts have delegates too, and if we needed to know when the
user had dismissed the alert or which button was tapped, we could specify self as the dele-
gate here just as we did with the action sheet. If we had done that, we would now have to go
conform our class to the UIAlertViewDelegate protocol also and implement one or more
of the methods from that protocol. In this case, we’re just informing the user of something
and only giving the user one button. We don’t really care when the button is tapped, and we
already know which button will be tapped, so we just specify nil here to indicate that we
don’t need to be pinged when the user is done with the alert.

Alerts, unlike action sheets, are not tied to a particular view, so we just tell the alert to show
itself without specifying a parent view. After that, it’s just a matter of some memory cleanup
and we’re done. Go ahead and save, and then build, run, and try out the completed applica-
tion.

Spiffing Up the Button
If you compare your running application to Figure 4-2, you might notice an interesting dif-
ference. Your Do Something button doesn’t look like ours, and it doesn’t look like the button
on the action sheet or those in other iPhone applications, does it? That default Round Rect
Button doesn’t really look that spiffy, so let’s take care of that before we finish up the chapter.

Most of the buttons you see on your iPhone are drawn using images. Don’t worry; you don’t
have to create images in an image editor for every button. All you have to do is specify a
kind of template image that the iPhone will use when drawing your buttons.

24594ch04.indd 92 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 93

It’s important to keep in mind that your application is sandboxed. You can’t get to the tem-
plate images that are used in other applications on your iPhone or the ones used by the
iPhone OS, so you have to make sure that any images you need are in your application’s
bundle. So, where can we get these image templates?

Fortunately, Apple has provided a bunch for you. You can get them from the iPhone sample
application called UICatalog, available at:

http://developer.apple.com/iphone/library/samplecode/UICatalog/index.html

Alternatively, you can simply copy them out of the 04 Control Fun folder from this book’s
project archive. Yes, it is OK to use these images in your own applications; Apple’s sample
code license specifically allows you to use and distribute them.

So, from either the 04 Control Fun folder or the Images subfolder of the UICatalog project’s
folder, add the two images named blueButton.png and whiteButton.png to your Xcode
 project.

If you open one of these two images in Preview.app or in an image editing program, you’ll
see that there’s not very much to them, and there’s a trick to using them for your buttons.

Go back to Interface Builder, single-click the Do Something button, and press ⌘1 to open
the attributes inspector. In the inspector, use the first pop-up menu to change the type from
Rounded Rect to Custom. You’ll see in the inspector that you can specify an image for your
button, but we’re not going to do that, because these image templates need to be handled a
little differently. Save the nib, and go back to Xcode.

The viewDidLoad Method
UIViewController, our controller’s superclass, has a method called viewDidLoad that we
can override if we need to modify any of the objects that were created from our nib. Because
we can’t do what we want completely in Interface Builder, we’re going to take advantage of
viewDidLoad. Go ahead and add the following method to your Control_FunViewController.m
file. When you’re done, we’ll talk about what the method does.

- (void)viewDidLoad
{
 UIImage *buttonImageNormal = [UIImage imageNamed:@"whiteButton.png"];
 UIImage *stretchableButtonImageNormal = [buttonImageNormal
 stretchableImageWithLeftCapWidth:12 topCapHeight:0];
 [doSomethingButton setBackgroundImage:stretchableButtonImageNormal
 forState:UIControlStateNormal];

 UIImage *buttonImagePressed = [UIImage imageNamed:@"blueButton.png"];
 UIImage *stretchableButtonImagePressed = [buttonImagePressed
 stretchableImageWithLeftCapWidth:12 topCapHeight:0];

24594ch04.indd 93 6/25/09 4:17:46 PM

Download at Boykma.Com

http://developer.apple.com/iphone/library/samplecode/UICatalog/index.html

CHAPTER 4: More User Interface Fun94

 [doSomethingButton setBackgroundImage:stretchableButtonImagePressed
 forState:UIControlStateHighlighted];

}

NOTE
The project template we used actually created a stub implementation of viewDidLoad but it’s com-
mented out in the file. You can place the code above inside that stub, or simply re-type the method from
scratch and delete the commented-out stub, whichever you prefer.

This code sets the background image for the button based on those template images we
added to our project. It specifies that, while being touched, the button should change from
using the white image to the blue image. This short method introduces two new concepts:
control states, and stretchable images. Let’s look at each of them in turn.

Control States
Every iPhone control has four possible control states and is always in one and only one of
those states at any given moment. The most common state is the normal control state,
which is the default state. It’s the state that controls are in when not in any of the other
states. The highlighted state is the state a control is in when it’s currently being used. For a
button, this would be while the user has a finger on the button. The disabled state is what
controls are in when they’ve been turned off, which can be done by unchecking the Enabled
checkbox in Interface Builder or setting the control’s enabled property to NO. The final state
is selected, which only some controls support, and it is usually used to indicate that this
control is turned on or selected. Selected is similar to highlighted, but controls can continue
to be selected when the user is no longer directly using that control.

Certain iPhone controls have attributes that can take on different values depending on their
state. For example, by specifying one image for UIControlStateNormal and a different
image for UIControlStateHighlighted, we are telling the iPhone to use one image when
the user has a finger on the button and a different image the rest of the time.

Stretchable Images
Stretchable images are an interesting concept. A stretchable image is a resizable image that
knows how to resize itself intelligently so that it maintains the correct appearance. For these
button templates, we don’t want the edges to stretch evenly with the rest of the image. End
caps are the parts of an image, measured in pixels, that should not be resized. We want the
bevel around the edges to stay the same no matter what size we make the button, so we
specify a left end cap size of 12.

24594ch04.indd 94 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 95

Because we pass in the new stretchable image into our button rather than the image tem-
plate, the iPhone knows how to draw the button properly at any size. We could now go in
and change the size of the button in Interface Builder, and it would still be drawn correctly. If
we had specified the button image right in Interface Builder, it would resize the entire image
evenly, and our button would look weird at most sizes.

TIP
How did we know what value to use for the end caps? It’s simple really: we copied them from Apple’s
sample code.

Being a Good Memory Citizen
Before we take our new button for a spin, there’s one more topic we’d like to discuss. With
the release of iPhone SDK 3.0, Apple introduced a new method in UIViewController, which
is the class from which all view controllers in Cocoa Touch descend, including Control_
FunViewController. This new method is called viewDidUnload, and it’s an important
method in terms of keeping memory overhead down

In Chapter 6, we’ll start talking about applications with multiple views. When you have multi-
ple views, the iPhone OS will load and unload nib files to preserve memory. We’ll look at this
process in-depth in Chapter 6 and throughout the rest of the book, and we don’t want you
to worry too much about multiple views yet, but we do want to show you the correct way of
implementing a view controller class. When a view gets unloaded, any object that your con-
troller class has an outlet to can’t be flushed from memory because you have retained that
object by specifying the retain keyword in the outlet’s property.

Therefore, when your controller gets notified that its view has been unloaded, it is important
to set all the controller’s outlet properties to nil so that memory can get freed up. Cocoa
Touch will automatically re-connect your outlets when the nib file gets re-loaded, so there’s
no danger with doing this, and by doing it, you will be a good memory citizen by not hog-
ging memory you don’t need.

Our Control Fun application is a single-view application, so viewDidUnload will never be
called while the program is running. But, just because an application starts as a single-view
application doesn’t mean it will always be one, so you should be a good memory citizen
even when you know you can get away with not being one. Let’s be good memory citizens
by adding the following method to Control_FunViewController.m to free up our outlets when
our view gets unloaded:

24594ch04.indd 95 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun96

- (void)viewDidUnload {
 self.nameField = nil;
 self.numberField = nil;
 self.sliderLabel = nil;
 self.leftSwitch = nil;
 self.rightSwitch = nil;
 self.doSomethingButton = nil;
 [super viewDidUnload];
}

Note the use of Objective-C dot notation once again. This time, since it is used as the left
side of an assignment, the dot notation is equivalent to calling our mutator. For example,
this line of code:

 self.nameField = nil;

is equivalent to this line of code:

 [self setNameField:nil];

Think about what happens when our mutator does its thing. Remember, we synthesized
our mutators using the retain keyword. First, our mutator retains the new object, then it
releases the old object, and then it assigns the new object to its instance variable. In this
case, the mutator retains nil, which doesn’t do anything. Next, the old object is released,
which is exactly what we want to do, since that old object was retained when it was origi-
nally connected. And, finally, nil is assigned to nameField. Pretty cool, eh?

Once you’ve added that method, why don’t you save and go try it out? Everything should
work exactly as it did earlier, but that button should look a lot more iPhone-like. You
won’t see any difference in the way the application behaves as a result of adding the
 viewDidUnload method, but you can sleep soundly at night knowing you did the right
thing. Good job, citizen!

Crossing the Finish Line
This was a big chapter. Conceptually, we didn’t hit you with too much new stuff, but we took
you through the use of a good number of controls and showed you a lot of different imple-
mentation details. You got a lot more practice with outlets and actions and saw how to use
the hierarchical nature of views to your advantage. You learned about control states and
stretchable images, and you also learned to use both action sheets and alerts.

There’s a lot going on in this little application. Feel free to go back and play with it. Change
values, experiment by adding and modifying code, and see what different settings in Inter-
face Builder do. There’s no way we could take you through every permutation of every

24594ch04.indd 96 6/25/09 4:17:46 PM

Download at Boykma.Com

CHAPTER 4: More User Interface Fun 97

control available on an iPhone, but the application you just put together is a good starting
point and covers a lot of the basics.

In the next chapter, we’re going to look at what happens when the user rotates the iPhone
from portrait to landscape or vice versa. You’re probably well aware that many iPhone appli-
cations change their displays based on the way the user is holding the iPhone, and we’re
going to show you how to do that in your own applications.

24594ch04.indd 97 6/25/09 4:17:46 PM

Download at Boykma.Com

24594ch04.indd 98 6/25/09 4:17:46 PM

Download at Boykma.Com

Chapter 5

99

t
Autorotation and
Autosizing

he iPhone is an amazing piece of engineering. Apple engineers found all kinds
of ways to squeeze maximum functionality into a pocket-sized package. One
example is the mechanism that allows applications to be used in either por-
trait (tall and skinny) or landscape (short and wide) mode and to change that
orientation at runtime if the phone is rotated. A prime example of this behav-
ior, which is called autorotation, can be seen in iPhone’s web browser, Mobile
Safari (see Figure 5-1).

Figure 5-1. Like many iPhone applications, Mobile Safari changes its display based on
how it is held, making the most of the available screen space.

24594ch05.indd 99 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing100

Autorotation might not be right for every application. Several of Apple’s iPhone applications
support only a single orientation. Movies can be watched only in landscape mode, for exam-
ple, and contacts can be edited only in portrait mode. Bottom line, if autorotation enhances
the user experience, add it to your application.

Fortunately, Apple did a great job of hiding the complexities of autorotation in the iPhone
OS and in the UIKit, so implementing this behavior in your own iPhone applications is actu-
ally quite easy.

Autorotation is specified in the view controller, so if the user rotates the phone, the active
view controller will be asked if it’s OK to rotate to the new orientation (something you’ll see
how to do in this chapter). If the view controller responds in the affirmative, the application’s
window and views will be rotated, and the window and view will get resized to fit the new
orientation.

A view that starts in portrait mode will be 320 pixels wide and 460 pixels tall or 480 pixels
tall if there’s no status bar. The status bar is the 20-pixel strip at the top of the screen (see
Figure 5-1) that shows things like signal strength, time, and battery charge. When the phone
is switched to landscape mode, the view rotates, along with the application’s window, and
gets resized to fit the new orientation, so that it is 480 pixels wide by 300 pixels tall (320 pix-
els if there’s no status bar).

Most of the work in actually moving the pixels around the screen is managed by the iPhone
OS. Your application’s main job in all this is making sure everything fits nicely and looks
proper in the resized window.

Your application can take three general approaches when managing rotation. Which one
you use depends on the complexity of your interface, and we’ll look at all three approaches
in this chapter. With simpler interfaces, you can simply specify the correct autosize attri-
butes for all of the objects that make up your interface. Autosize attributes tell the iPhone
how your controls should behave when their enclosing view gets resized. If you’ve worked
with Cocoa on Mac OS X, you’re already familiar with the basic process, because it is the
same one used to specify how Cocoa controls behave when the user resizes the window in
which they are contained. You’ll see this concept in action in just a bit.

Autosize is quick and easy but not appropriate for all applications. More complex interfaces
have to handle autorotation in a different manner. For more complex views, you have two
basic approaches. One approach is to manually reposition the objects in your view when
notified that your view is rotating. The second approach is to actually design two different
versions of your view in Interface Builder, one for portrait mode and a separate one for land-
scape mode. In both cases, you will need to override methods from UIViewController in
your view’s controller class.

Let’s get started, shall we? We’ll look at autosizing first.

24594ch05.indd 100 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 101

Handling Rotation Using Autosize Attributes
Start a new project in Xcode, and call it Autosize. We’re going to stick with the same view-
based application template for this application. Before we design our view in Interface
Builder, we need to tell the iPhone that our view supports autorotation. We do that by
 modifying the view controller class.

Specifying Rotation Support
Once your project is open in Xcode, expand the Classes folder, and single-click
AutoSizeViewController.m. If you look at the code that’s already there, you’ll see that a
method called shouldAutorotateToInterfaceOrientation: is already provided for you,
courtesy of the template, but it’s commented out. Uncomment it now by deleting the com-
ment beginning and ending:

...
/*
// Override to allow orientations other than the default portrait
// orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/
...

This method is the system’s way of asking your view controller if it’s OK to rotate to a specific
orientation. Four defined orientations correspond to the four general ways that the iPhone
can be held:

UIInterfaceOrientationPortrait

UIInterfaceOrientationPortraitUpsideDown

UIInterfaceOrientationLandscapeLeft

UIInterfaceOrientationLandscapeRight

When the phone is changed to a new orientation, this method is called on the active view
controller. The parameter interfaceOrientation will contain one of the four values in
the preceding list, and this method needs to return either YES or NO to signify whether the
application’s window should be rotated to match the new orientation. Because every view
controller subclass can implement this differently, it is possible for one application to sup-
port autorotation with some of its views but not with others.

24594ch05.indd 101 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing102

TIP
Have you noticed that the defined system constants on iPhone are always designed so that values that
work together start with the same letters? One reason why UIInterfaceOrientationPortrait,
UIInterfaceOrientationPortraitUpsideDown, UIInterfaceOrientation-
LandscapeLeft, and UIInterfaceOrientationLandscapeRight all begin with
UIInterfaceOrientation is to let you take advantage of Xcode’s Code Sense feature. You’ve
 probably noticed that as you type Xcode frequently tries to complete the word you are typing. That’s Code
Sense in action. Developers cannot possibly remember all the various defined constants in the system, but
you can remember the common beginning for the groups you use frequently. When you need to specify an
orientation, simply type UIInterfaceOrientation (or even UIInterf) and then press the escape key to bring up
a list of all matches (in Xcode’s preferences, you can change that matching key from escape to something
else). You can use the arrow keys to navigate the list that appears and make a selection by pressing the
tab or return key. This is much faster than having to go look the values up in the documentation or header
files.

The default implementation of this method looks at interfaceOrientation and returns
YES only if it is equal to UIInterfaceOrientationPortrait, which limits this application to
one orientation, effectively disabling autorotation.

If we wanted to enable rotation to any orientation, we’d simply change the method to return
YES for any value passed in, like so:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 return YES;
}

In order to support some but not all orientations, we have to look at the value of interfa-
ceOrientation and return YES for those that we want to support and NO for those we don’t.
For example, to support portrait mode and landscape mode in both directions but not rota-
tion to the upside down portrait mode, we could do this:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 return (interfaceOrientation !=
 UIInterfaceOrientationPortraitUpsideDown);
}

Go ahead and change the shouldAutorotateToInterfaceOrientation: method to match
the preceding version. As a general rule, UIInterfaceOrientationPortraitUpsideDown
is discouraged by Apple, because if the phone rings while it is being held upside down, the
phone is likely to remain upside down when it’s answered.

24594ch05.indd 102 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 103

Save, and then we’ll look at setting autosize attributes in Interface Builder.

Designing an Interface with Autosize
Attributes
In Xcode, expand the Resources folder, and double-
click AutosizeViewController.xib to open the file
in Interface Builder. One nice thing about using
autosize attributes is that they require very little
code. We do have to specify which orientations we
support, as we just did in our view controller, but
everything else we need to do in order to imple-
ment this technique will be done right here in
Interface Builder.

To see how this works, drag six Round Rect Buttons
from the library over to your view, and place them
as we’ve done in Figure 5-2. Double-click each but-
ton, and assign a title to each one so we can tell
them apart later. We’ve numbered ours from 1 to 6.

Save, and go back to Xcode. Let’s see what happens
now that we’ve specified that we support autorota-
tion but haven’t set any autosize attributes. Build
and run. Once the iPhone simulator comes up,
select Rotate Left from the Hardware menu, which
will simulate turning the iPhone into landscape
mode. Take a look at Figure 5-3. Oh, dear.

Figure 5-3. Well, that’s not very useful, is it?

Figure 5-2. Adding six numbered but-
tons to the interface

24594ch05.indd 103 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing104

Most controls default to a setting that has them stay where they are in relation to the left
side and top of the screen. There are some controls for which this would be appropriate.
The top-left button, number 1, for example, is probably right where we want it—the rest of
them, however, not so much.

Quit the simulator, and go back to Interface Builder.

Autosize Attributes
Single-click the top-left button on your view, and then
press ⌘3 to bring up the size inspector, which should
look like Figure 5-4.

The size inspector allows you to set an object’s auto-
size attributes. Figure 5-5 shows the part of the size
inspector that controls an object’s autosize attributes.

The box on the left in Figure 5-5 is where we actually set
the attributes; the box on the right is a little animation
that will show us how the object will behave during a
resize. In the box on the left, the inner square represents
the current object. If a button is selected, the inner
square represents that button.

The red arrows inside the inner square represent the
horizontal and vertical space inside the selected object.
Clicking either arrow will change it from solid to dashed
or from dashed back to solid. If the horizontal arrow is
solid, the width of the object is free to change as the
window resizes; if the horizontal arrow is dashed, the
iPhone will try to keep the width of the object at its
original value if possible. The same is true for the height
of the object and the vertical arrow.

The four red “I” shapes outside the inner box represent
the distance between the edge of the selected object
and the same edge of the view that contains it. If the “I”
is dashed, the space is flexible, and if it’s solid red, the
amount of space should be kept constant if possible.

Huh?

Figure 5-4. The size inspector
allows you to set an object’s autosize
 attributes.

Figure 5-5. The Autosizing section
of the size inspector

24594ch05.indd 104 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 105

Perhaps this concept will make a little more sense if you actually see it in action. Take a look
back at Figure 5-5, which represents the default autosize settings. These default settings
specify that the object’s size will remain constant as its superview is resized and that the dis-
tance from the left and top edges should also stay constant. If you look at the animation
next to the autosize control, you can see how it will behave during a resize. Notice that the
inner box stays in the same place relative to the left and top edges of the parent view as the
parent view changes in size.

Try this experiment. Click both of the solid red “I” shapes
(to the top and left of the inner box) so they become
dashed and look like the ones shown in Figure 5-6.

With all the lines set to dashed, the size of the object will
be kept the same, and it will float in the middle of the
superview as the superview is resized.

Now, click the vertical arrow inside the box and the “I”
shape both above and below the box so that your auto-
size attributes look like the ones shown in Figure 5-7.

With this configuration, we are indicating that the vertical
size of our object can change and that the distance from
the top of our object to the top of the window and the
distance from the bottom of our object to the bottom of
the window should stay constant. With this configuration,
the width of the object wouldn’t change, but its height
would. Change the autosize attributes a few more times and watch the animation until you
grok how different settings will impact the behavior when the view is rotated and resized.

Setting the Buttons’ Autosize Attributes
Now, let’s set the autosize attributes for our six buttons. Go ahead and see if you can fig-
ure them out. If you get stumped, take a look at Figure 5-8, which shows you the autosize
attributes needed for each button in order to keep them on the screen when the phone is
rotated.

Figure 5-6. With all dashed lines,
your control floats in the parent
and keeps its size.

Figure 5-7. This configuration
allows the vertical size of our object
to change.

24594ch05.indd 105 6/23/09 10:57:31 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing106

Figure 5-8. Autosize attributes for all six buttons

Once you have the attributes set the same as Figure 5-8, save the nib, go back to Xcode, and
build and run. This time, when the iPhone simulator comes up, you should be able to select
Rotate Left or Rotate Right from the Hardware menu and have all the buttons stay on the
screen (see Figure 5-9). If you rotate back, they should return to their original position. This
technique will work for a great many applications.

Figure 5-9. The buttons in their new positions after rotating

In this example, we kept our buttons the same size, so now all of our buttons are visible and
usable, but there is an awful lot of unused white space on the screen. Perhaps it would be
better if we allowed the width or height of our buttons to change so that there will be less
empty space on the interface? Feel free to experiment with the autosize attributes of these
six buttons, and add some other buttons if you want. Play around until you feel comfortable
with the way autosize works.

24594ch05.indd 106 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 107

In the course of your experimentation, you’re bound to notice that, sometimes, no combina-
tion of autosize attributes will give you exactly what you want. Sometimes, you are going to
need to rearrange your interface more drastically than can be handled with this technique.
For those situations, a little more code is in order. Let’s take a look at that, shall we?

Restructuring a View
When Rotated
In Interface Builder, single-click each of the buttons,
and use the size inspector to change the w and h field
to 125, which will set the width and height of the but-
ton to 125 pixels. When you are done, rearrange your
buttons using the blue guidelines so that your view
looks like Figure 5-10.

Can you guess what’s going to happen this time
when we rotate the screen? Well, assuming that you
returned the buttons’ autosize attributes back to those
shown in Figure 5-8, what will happen isn’t likely what
we want to happen. The buttons are going to overlap
and look like Figure 5-11, because there simply isn’t
enough height on the screen in landscape mode to
accommodate three buttons that are 125 pixels tall.

Figure 5-11. Not exactly what we want

We could accommodate this scenario using the autosize attributes by allowing the height
of the buttons to change, but that’s not going to make the best use of our screen real estate
because it’s going to leave a large gap in the middle of the screen. If there was room for six
square buttons when the interface was in portrait mode, there should still be room for six

Figure 5-10. View after resizing all the
buttons

24594ch05.indd 107 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing108

square buttons in landscape mode, we just need to shuffle them around a bit. One way we
can handle this is to specify new positions for each of the buttons when the view is rotated.

Declaring and Connecting Outlets
To change a control’s attributes, we need an outlet that points to the object we want to
change. As a result, we need to declare an outlet for each of the six buttons in order to rear-
range them. Add the following code to AutosizeViewController.h:

#import <UIKit/UIKit.h>

@interface AutosizeViewController : UIViewController {
 UIButton *button1;
 UIButton *button2;
 UIButton *button3;
 UIButton *button4;
 UIButton *button5;
 UIButton *button6;
}
@property (nonatomic, retain) IBOutlet UIButton *button1;
@property (nonatomic, retain) IBOutlet UIButton *button2;
@property (nonatomic, retain) IBOutlet UIButton *button3;
@property (nonatomic, retain) IBOutlet UIButton *button4;
@property (nonatomic, retain) IBOutlet UIButton *button5;
@property (nonatomic, retain) IBOutlet UIButton *button6;
@end

Save this file, and go back to Interface Builder. Control-drag from the File’s Owner icon to
each of the six buttons, and connect them to the corresponding outlet. Once you’ve con-
nected all six, save the nib, and pop back over to Xcode.

Moving the Buttons on Rotation
To move these buttons to make the best use of space, we need to override the method wil
lAnimateRotationToInterfaceOrientation:duration: in AutosizeViewController.m. This
method gets called automatically after a rotation has occurred but before the final rotation
animations have occurred.

NOTE
The method willAnimateRotationToInterfaceOrientation:duration: is new with
3.0. In previous versions of the SDK, the method willAnimateSecondHalfOfRotationFrom
InterfaceOrientation:duration: can be used; however, the two-part animation used prior
to 3.0 is considerably slower than the method we’re using here, so you should avoid those methods unless
you absolutely need to support older versions of the iPhone OS in your application.

24594ch05.indd 108 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 109

Add the following code, and then we’ll talk about what it’s doing:

#import "AutosizeViewController.h"

@implementation AutosizeViewController
@synthesize button1;
@synthesize button2;
@synthesize button3;
@synthesize button4;
@synthesize button5;
@synthesize button6;

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation duration:(NSTimeInterval)duration {

 if (interfaceOrientation == UIInterfaceOrientationPortrait
 || interfaceOrientation ==
 UIInterfaceOrientationPortraitUpsideDown) {
 button1.frame = CGRectMake(20, 20, 125, 125);
 button2.frame = CGRectMake(175, 20, 125, 125);
 button3.frame = CGRectMake(20, 168, 125, 125);
 button4.frame = CGRectMake(175, 168, 125, 125);
 button5.frame = CGRectMake(20, 315, 125, 125);
 button6.frame = CGRectMake(175, 315, 125, 125);
 }
 else {
 button1.frame = CGRectMake(20, 20, 125, 125);
 button2.frame = CGRectMake(20, 155, 125, 125);
 button3.frame = CGRectMake(177, 20, 125, 125);
 button4.frame = CGRectMake(177, 155, 125, 125);
 button5.frame = CGRectMake(328, 20, 125, 125);
 button6.frame = CGRectMake(328, 155, 125, 125);
 }
}
- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 return (interfaceOrientation !=
 UIInterfaceOrientationPortraitUpsideDown);
}
- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Releases the view if it doesn't have a superview
 // Release anything that's not essential, such as cached data
}
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.button1 = nil;

24594ch05.indd 109 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing110

 self.button2 = nil;
 self.button3 = nil;
 self.button4 = nil;
 self.button5 = nil;
 self.button6 = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [button1 release];
 [button2 release];
 [button3 release];
 [button4 release];
 [button5 release];
 [button6 release];
 [super dealloc];
}

The size and position of all views, including controls such as buttons, are specified in a prop-
erty called frame, which is a struct of type CGRect. CGRectMake is a function provided by
Apple that lets you easily create a CGRect by specifying the x and y positions along with the
width and height.

NOTE
The function CGRect() begins with the letters “CG,” indicating that it comes from the Core Graphics
framework. As its name implies, the Core Graphics framework contains code related to graphics and draw-
ing. In earlier versions of the iPhone SDK, the Core Graphics framework was not included in Xcode iPhone
project templates and had to be added manually. That step is no longer necessary, since the Core Graphics
framework is automatically included when you use any of the iPhone Xcode templates.

Save this code. Now build and run to see it in action. Try rotating, and watch how the but-
tons end up in their new positions.

Swapping Views
There is one other way of handling autorotation, and it’s an option you’ll likely use only
in the case of very complex interfaces. Moving controls to different locations, as we did in
the previous section, can be a very tedious process, especially with a complex interface.
Wouldn’t it be nice if we could just design the landscape and portrait views separately and
then swap them out when the phone is rotated?

24594ch05.indd 110 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 111

Well, we can. But it’s a moderately complex option. While
controls on both views can trigger the same actions, we will
have to have two completely distinct sets of outlets, one for
each of the views, and that will add a certain complexity to
our code. It is, by no means, an insurmountable amount of
complexity, and there are times when this option is the best
one. Let’s try it out.

Create a new project in Xcode using the view-based
application template again; we’ll start working with other
templates next chapter. Call this project Swap. The inter-
face we’ll be building in this application won’t actually be
complex enough to really justify the technique we’re using.
However, we want to make sure the process is clear, so we’re
going to use a fairly simple interface. When this application
we’re writing starts up, it will be in portrait mode. There will
be two buttons, one on top of the other (see Figure 5-12).

When you rotate the phone, we’ll swap in a completely dif-
ferent view to be shown for the landscape orientation. It
will also feature two buttons with the exact same labels (see
Figure 5-13), so the user won’t know they’re looking at two
different views.

Figure 5-13. Similar but not the same

When the buttons are tapped, they will become hidden. This gives us a chance to show you
some of the nuances of dealing with two sets of outlets. In a real application, there may be
times when you want to hide or disable a button like this. As an example, you might create a
button that kicked off a lengthy process and you didn’t want the user tapping the same but-
ton again until that process had finished.

Figure 5-12. The Swap applica-
tion at launch

24594ch05.indd 111 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing112

Determining Outlets
Because there are two buttons on each view that we’re going to build and because an outlet
can’t point to more than one object, we need to declare four outlets, two for the landscape
view buttons and two for the portrait view buttons. When using this technique, it becomes
very important to put some thought into your outlet names to keep your code from becom-
ing confusing to read.

But, oho! Is that somebody in the back saying, “Do we really need outlets for all these
buttons? Since we’re deactivating the button that was tapped, can’t we just use sender
instead?” And in a single-view scenario, that would be exactly the right way to go about it.

Think about this. What if the user taps the Foo button and then rotates the phone? The Foo
button on the other view is a completely different button, and it will still be active, which
isn’t the behavior we want. We don’t really want to advertise to the users that the object
they’re dealing with now isn’t the same one they were dealing with a moment ago.

In addition to the outlets for the buttons, we need two more outlets to point to the two dif-
ferent versions of our view. When working with a single view only, our parent class’s view
property was all we needed. But, since we’re going to be changing the value of view at
runtime, we need to make sure we have a way to get to both views, hence the need for two
UIView outlets.

Determining Actions
Our buttons need to trigger an action, so we’re definitely going to need at least one action
method. We’re going to design a single action method to handle the pressing of any of the
buttons, so we’ll just declare a single buttonPressed: action in our view controller class.

Declaring Actions and Outlets
Add the following code to SwapViewController.h to create the outlets we’ll need when we go
to Interface Builder.

#import <UIKit/UIKit.h>
#define degreesToRadians(x) (M_PI * (x) / 180.0)
@interface SwapViewController : UIViewController {
 UIView *landscape;
 UIView *portrait;

 // Foo
 UIButton *landscapeFooButton;
 UIButton *portraitFooButton;

 // Bar
 UIButton *landscapeBarButton;

24594ch05.indd 112 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 113

 UIButton *portraitBarButton;
}
@property (nonatomic, retain) IBOutlet UIView *landscape;
@property (nonatomic, retain) IBOutlet UIView *portrait;
@property (nonatomic, retain) IBOutlet UIButton *landscapeFooButton;
@property (nonatomic, retain) IBOutlet UIButton *portraitFooButton;
@property (nonatomic, retain) IBOutlet UIButton *landscapeBarButton;
@property (nonatomic, retain) IBOutlet UIButton *portraitBarButton;

-(IBAction)buttonPressed:(id)sender;
@end

This line of code:

#define degreesToRadians(x) (M_PI * (x) / 180.0)

is simply a macro to convert between degrees and radians. We’ll use that in a few minutes
when calling a function that requires radians as an input. Most people, including us, don’t
think in radians, so this macro will make our code much more readable by letting us specify
angles in degrees instead of radians.

Everything else in this header should be familiar to you, so now that we have our outlets
implemented, let’s go to Interface Builder and build the two views we need. Double-click
SwapViewController.xib in the Resources folder of the Groups & Files pane to open the file in
Interface Builder.

Designing the Two Views
Ideally, what you’re seeing in Interface Builder right now should feel very familiar to you.
We’ll need two views in our nib. We don’t want to use the existing view that was provided as
part of the template because its size can’t be changed. Instead, we’ll delete the default view
and create two new ones.

Single-click the View icon, and press the Delete button. Next, drag over two Views from the
library. After doing that, you’ll have two icons labeled View. That might get a little confusing,
so let’s rename them to make it obvious what each one does.

To rename an icon in the nib’s main window, you have to single-click the view to select it,
wait a second or two, and then click the name of the icon. After another second, the name
will become editable, and you can type the new name. Note that this trick works only in the
icon view mode. Name one view Portrait and the other Landscape.

Now, control-drag from the File’s Owner icon to the Portrait icon, and when the gray menu
pops up, select the portrait outlet. Then, control-drag from File’s Owner to the Landscape
icon, and select the landscape outlet. Now control-drag a third time from File’s Owner to
 Portrait, and select the view outlet to indicate which view should be shown at launch time.

24594ch05.indd 113 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing114

Double-click the icon called Landscape, and press ⌘3 to bring up the size inspector. Right
now, the size of this view should be 320 pixels wide by 460 pixels tall. Change the values so
that it is 480 pixels wide by 300 pixels tall, or you can press the little arrow icon in the right
side of the view’s title bar, which will automatically change the view’s proportions to land-
scape. Now drag two Round Rect Buttons over from the library onto the Landscape view. The
exact size and placement doesn’t matter, but we made them nice and big at 125 pixels wide
and 125 pixels tall. Double-click the left button, and give it a title of Foo; then double-click
the right one, and give it a title of Bar.

Control-drag from the File’s Owner icon to the Foo button, and assign it to the landscape
FooButton outlet; then do the same thing to assign the Bar button to the landscapeBar
Button outlet. Now, single-click the Foo button, and switch to the connections inspector
by pressing ⌘2. Drag from the circle that represents the Touch Up Inside event to the File’s
Owner icon, and select the buttonPressed: action. Repeat with the Bar button so that both
buttons trigger the buttonPressed: action method. You can now close the Landscape
 window.

Double-click the Portrait icon to open that view for editing. Drag two more Round Rect
 Buttons from the library, placing them one above the other this time. Again, make the size
of each button 125 pixels wide and 125 pixels tall. Double-click the top button, and give it
a title of Foo. Then, double-click the bottom button, and assign it a title of Bar. Control-drag
from the File’s Owner icon to the Foo button, and assign it to the portraitFooButton outlet.
Control-drag from the File’s Owner icon once again to the Bar button, and assign it to the
portraitBarButton outlet. Click the Foo button, and drag from the Touch Up Inside event
on the connections inspector over to the File’s Owner icon, and select the buttonPressed:
action. Repeat this connection with the Bar button.

Save the nib, and go back to Xcode.

Implementing the Swap and the Action
We’re almost done now; we just need to put the code in place to handle the swap and the
button taps. Add the code that follows to your SwapViewController.m file.

NOTE
This code listing does not show commented-out methods provided by the stub. Feel free to delete the
commented-out methods that were already in your controller class.

#import "SwapViewController.h"

@implementation SwapViewController
@synthesize landscape;

24594ch05.indd 114 6/23/09 10:57:32 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 115

@synthesize portrait;
@synthesize landscapeFooButton;
@synthesize portraitFooButton;
@synthesize landscapeBarButton;
@synthesize portraitBarButton;

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation duration:(NSTimeInterval)duration {
 if (interfaceOrientation == UIInterfaceOrientationPortrait) {
 self.view = self.portrait;
 self.view.transform = CGAffineTransformIdentity;
 self.view.transform =
 CGAffineTransformMakeRotation(degreesToRadians(0));
 self.view.bounds = CGRectMake(0.0, 0.0, 300.0, 480.0);
 }
 else if (interfaceOrientation == UIInterfaceOrientationLandscapeLeft) {
 self.view = self.landscape;
 self.view.transform = CGAffineTransformIdentity;
 self.view.transform =
 CGAffineTransformMakeRotation(degreesToRadians(-90));
 self.view.bounds = CGRectMake(0.0, 0.0, 460.0, 320.0);
 }
 else if (interfaceOrientation ==
 UIInterfaceOrientationPortraitUpsideDown) {
 self.view = self.portrait;
 self.view.transform = CGAffineTransformIdentity;
 self.view.transform =
 CGAffineTransformMakeRotation(degreesToRadians(180));
 self.view.bounds = CGRectMake(0.0, 0.0, 300.0, 480.0);
 }
 else if (interfaceOrientation ==
 UIInterfaceOrientationLandscapeRight) {
 self.view = self.landscape;
 self.view.transform = CGAffineTransformIdentity;
 self.view.transform =
 CGAffineTransformMakeRotation(degreesToRadians(90));
 self.view.bounds = CGRectMake(0.0, 0.0, 460.0, 320.0);
 }
}
-(IBAction)buttonPressed:(id)sender {

 if (sender == portraitFooButton || sender == landscapeFooButton) {
 portraitFooButton.hidden = YES;
 landscapeFooButton.hidden = YES;
 } else {
 portraitBarButton.hidden = YES;
 landscapeBarButton.hidden = YES;

24594ch05.indd 115 6/23/09 10:57:33 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing116

 }
}
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation {
 return YES;
 }
- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Releases the view if it doesn't have a superview
 // Release anything that's not essential, such as cached data
}
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.landscape = nil;
 self.portrait = nil;
 self.landscapeFooButton = nil;
 self.landscapeBarButton = nil;
 self.portraitFooButton = nil;
 self.portraitBarButton = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [landscape release];

 [portrait release];
 [landscapeFooButton release];
 [portraitFooButton release];
 [landscapeBarButton release];
 [portraitBarButton release];

 [super dealloc];
}

@end

The first method in our new code is called willAnimateRotationToInterfaceOrientation:
duration:. This is a method from our superclass that we’ve overridden that gets called as
the rotation begins but before the rotation actually happens. Actions that we take in this
method will be animated as part of the first half of the rotation animation.

In this method, we look at the orientation that we’re rotating to and set the view property
to either landscape or portrait, as appropriate for the new orientation. We then call
CGAffineTransformMakeRotation, part of the Core Graphics framework, to create a rota-
tion transformation. A transformation is a mathematical description of changes to an
object’s size, position, or angle. Ordinarily, iPhone takes care of setting the transform value
automatically when the phone is rotated. However, when we swap in our new view here, we

24594ch05.indd 116 6/23/09 10:57:33 AM

Download at Boykma.Com

CHAPTER 5: Autorotation and Autosizing 117

have to make sure that we give it the correct value so as not to confuse the iPhone. That’s
what willAnimateRotationToInterfaceOrientation:duration: is doing each time it
sets the view’s transform property. Once the view has been rotated, we adjust its frame so
that it fits snugly into the window at the current orientation.

Next up is our buttonPressed: method, and there shouldn’t be anything too surprising
there. We look at the button that was tapped, hide it, and then hide the corresponding
 button on the other view.

You should be comfortable with everything else we wrote in this class. The new
shouldAutorotateToInterfaceOrientation: method simply returns YES to tell the
iPhone that we support rotation to any orientation, and the code added to the dealloc
method is simple memory cleanup.

Now, we’re ready to compile it and try it. Note that if you accidentally clicked both buttons,
the only way to bring them back is to quit the simulator and rerun the project. Don’t use this
approach in your own applications.

Rotating Out of Here
In this chapter, you got to try out three completely different approaches to supporting
autorotation in your applications. You learned about autosizing attributes and how to
restructure your views, in code, when the phone rotates. You saw how to swap between two
completely different views when the phone rotates, and you learned how to link new frame-
works into your project.

In this chapter, you also got your first taste of using multiple views in an application by
swapping between two views from the same nib. In the next chapter, we’re going to start
looking at true multiview applications. Every application we’ve written so far has used a
single view controller and all except the last used a single content view. A lot of complex
iPhone applications such as Mail and Contacts, however, are only made possible by the use
of multiple views and view controllers, and we’re going to look at exactly how that works in
Chapter 6.

24594ch05.indd 117 6/23/09 10:57:33 AM

Download at Boykma.Com

24594ch05.indd 118 6/23/09 10:57:33 AM

Download at Boykma.Com

Chapter 6

119

u
Multiview
Applications

p until this point, we’ve written applications with a single view controller.
While there certainly is a lot you can do with a single view, the real power of
the iPhone platform emerges when you can switch out views based on user
input. Multiview applications come in several different flavors, but the under-
lying mechanism is the same, regardless of how it may appear on the screen.

Strictly speaking, we have worked with multiple views in our previous appli-
cations, since buttons, labels, and other controls are all subclasses of UIView
and can all go into the view hierarchy. But when Apple uses the term “view”
in documentation, it is generally referring to a UIView or one of its subclasses
that have a corresponding view controller. These types of views are also some-
times referred to as content views, because they are the primary container for
the content of our application.

The simplest example of a multiview application is a utility application. A util-
ity application focuses primarily on a single view but offers a second view that
can be used to configure the application or to provide more detail than the
primary view. The Stocks application that ships with iPhone is a good example
(see Figure 6-1). If you click the little i icon in the lower-right corner, the view
flips over to let you configure the list of stocks tracked by the application.

24594ch06.indd 119 6/23/09 2:18:26 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications120

Figure 6-1. The Stocks application that ships with iPhone has two views,
one to display the data and another to configure the stock list.

There are also several tab bar applications that ship with the iPhone, such as the Phone
application (see Figure 6-2) and the Clock application. A tab bar application is a multiview
application that displays a row of buttons, the tab bar, at the bottom of the screen. Tapping
one of the buttons causes a new view controller to become active and a new view to be
shown. In the Phone application, for example, tapping Contacts shows a different view than
the one shown when you tap Keypad.

NOTE
Tab bars and toolbars can be confusing. A tab bar is used for selecting one and only one option from
among two or more. A toolbar can hold buttons and certain other controls, but those items are not mutu-
ally exclusive. Figure 6-3 shows a toolbar at the bottom of the iPhone screen. Figure 6-4 shows a tab bar
at the bottom of the iPhone screen. In practical application, the tab bar is almost always used to select
between two or more content views, while the toolbar is usually used to display buttons for doing com-
mon tasks.

Another common kind of multiview iPhone application is the navigation-based application,
which uses a navigation controller to present hierarchical information to the user. The Mail
application is a good example (see Figure 6-3). In Mail, the first view you get is a list of your

24594ch06.indd 120 6/23/09 2:18:27 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 121

mail accounts. Touching one of those takes you into a list of your folders. Touching a folder
shows you the e-mail messages in that folder, and touching the e-mail message shows you
the content of the message. A navigation-based application is useful when you want to pres-
ent a hierarchy of views.

Because views are themselves hierarchical in nature, it’s even possible to combine different
mechanisms for swapping views within a single application. For example, the iPhone’s iPod
application uses a tab bar to switch between different methods of organizing your music
and a navigation controller and its associated navigation bar to allow you to browse your
music based on that selection. In Figure 6-4, the tab bar is at the bottom of the screen, and
the navigation bar is at the top of the screen.

Each of these types of multiview application uses a specific controller class from the UIKit.
Tab bar interfaces are implemented using the class UITabBarController and navigation
interfaces using UINavigationController. In this chapter, we’re going to focus on the
structure of multiview applications and the basics of swapping content views by building
our own multiview application from scratch. We will write our own custom controller class
that switches between two different content views, which will give you a strong foundation
for taking advantage of the various multiview controllers that Apple provides.

Figure 6-2. The Phone appli-
cation is an example of a
multiview application using a
tab bar.

Figure 6-3. The iPhone Mail
application is an example of a
multiview application using a
navigation bar.

Figure 6-4. The iPod applica-
tion uses both a navigation bar
and a tab bar.

24594ch06.indd 121 6/23/09 2:18:27 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications122

The View Switcher Application
The application we’re going to build in this chapter, View Switcher, is fairly simple in appear-
ance, but in terms of the code we’re going to write, it’s by far the most complex application
we’ve tackled. View Switcher will consist of three different controllers, three nibs, and an
application delegate.

When first launched, View Switcher will look like Figure 6-5, with a toolbar at the bottom
containing a single button. The rest of the view will contain a blue background and a button
yearning to be pressed.

When the Switch Views button is pressed, the background will turn yellow, and the button’s
title will change (see Figure 6-6).

If either the Press Me or Press Me, Too button is pressed, an alert will pop up indicating which
view’s button was pressed (see Figure 6-7).

Although we could achieve this same functionality by writing a single-view application,
we’re taking this more complex approach to demonstrate the mechanics of a multiview
application. There are actually three view controllers interacting in this simple application:
one that controls the blue view, one that controls the yellow view, and a third special con-
troller that swaps the other two in and out when the Switch Views button is pressed.

Figure 6-5. View Switcher at
launch

Figure 6-6. After pressing the
Switch Views button

Figure 6-7. Pressing the center
button shows an alert.

24594ch06.indd 122 6/23/09 2:18:27 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 123

The Architecture of a Multiview Application
Before we start building our application, let’s talk a little bit about the way iPhone multiview
applications are put together. Nearly all multiview applications use the same basic pattern.

The nib file is a key player here. In a bit, when you create the View Switcher project, you’ll
find the file MainWindow.xib in your project window’s Resources folder. Inside the file, you’ll
find the application delegate and the application’s main window, along with the File’s
Owner and First Responder icons. We’ll add an instance of a controller class that is respon-
sible for managing which other view is currently being shown to the user. We call this
controller the root controller because it is the first controller the user sees and the con-
troller that is loaded when the application loads. This root controller is often an instance
of UINavigationController or UITabBarController, though it can also be a custom
subclass of UIViewController. In a multiview application, the job of the root controller is
to take two or more other views and present them to the user as appropriate, based on the
user’s input. A tab bar controller, for example, will swap in different views and view control-
lers based on which tab bar item was last tapped. A navigation controller will do the same
thing as the user drills down and backs up through hierarchical data.

NOTE
The root controller is the primary view controller for the application and, as such, is the view that specifies
whether it is OK to automatically rotate to a new orientation, though the root controller can pass respon-
sibility for things like that to the currently active controller.

In multiview applications, most of the screen will be taken up by a content view, and each
content view will have its own controller with its own outlets and actions. In a tab bar appli-
cation, for example, taps on the tab bar will go to the tab bar controller, but taps anywhere
else on the screen will go to the controller that corresponds to the content view currently
being displayed.

Anatomy of a Content View
In a multiview application, each view controller controls a content view, and these content
views are where the bulk of your application’s user interface gets built. Each content view
generally consists of up to three pieces: the view controller, the nib and a subclass of UIView.
Unless you are doing something really unusual, your content view will always have an asso-
ciated view controller, will usually have a nib, and will sometimes subclass UIView. Although
you can create your interface in code rather than using a nib file, few people choose that
route because it is more time consuming and more difficult to maintain.

In this chapter, we’ll only be creating a nib and a controller class for each content view.

24594ch06.indd 123 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications124

In the View Switcher project, our root controller controls a content view that consists of a
toolbar that occupies the bottom of the screen. The root controller then loads a blue view
controller, placing the blue content view as a subview to the root controller view. When the
root controller’s switch views button is pressed (the button is in the toolbar), the root con-
troller swaps out the blue view controller and swaps in a yellow view controller, instantiating
it if it needs to do so. Confused? Don’t worry, because this will become clearer as you walk
through the code.

Building View Switcher
Enough theory! Let’s go ahead and build our project. Select New Project… from the File
menu, or press ⇧⌘N. When the assistant opens, select Window-based Application (see
 Figure 6-8), and make sure the checkbox labeled Use Core Data for Storage is unchecked.
Type in a project name of View Switcher.

Figure 6-8. Selecting a new project template

The template we just selected is actually even simpler than the one we’ve been using up to
now. This template will give us a window, an application delegate, and nothing else—no
views, no controllers, no nothing. You won’t use this template very often when you’re creat-
ing applications, but by starting from nothing, you’ll really get a feel for the way multiview
applications are put together.

24594ch06.indd 124 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 125

Take a second to expand the Resources and Classes folders in the Groups & Files pane and
look at what’s there. You’ll find a single nib file, MainWindow.xib; the View_Switcher-Info.plist
file; and the two files in the class folder that implement the application delegate. Everything
else we need for our application, we will have to create.

Creating Our View Controller and Nib Files
One of the more daunting aspects of creating a multiview application from scratch is that
we have to create several interconnected objects. We’re going to create all the files that will
make up our application before we do anything in Interface Builder and before we write any
code. By creating all the files first, we’ll be able to use Xcode’s Code Sense to write our code
faster. If a class hasn’t been declared, Code Sense has no way to know about it, so we would
have to type it in full every time, which takes longer and is more error prone.

Fortunately, in addition to project templates, Xcode also provides file templates for many
standard file types, which makes creating the basic skeleton of our application fairly easy.
Single-click the Classes folder in the Groups & Files pane, and then press ⌘N or select New
File… from the File menu. Take a look at the window that opens (see Figure 6-9).

Figure 6-9. Creating a new view controller class

If you select Cocoa Touch Class from the left-hand pane, you will be given templates for a
number of common Cocoa Touch classes. Select UIViewController subclass. In the lower-right
pane, you’ll see a checkbox labeled With XIB for user interface. If that box is checked, click it to
uncheck it. If you select that option, Xcode will also create a nib file that corresponds to this

24594ch06.indd 125 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications126

controller class. We will start using that option in the next chapter, but for now, we want you
to see how the different parts of the puzzle fit together by creating them all individually.

Click Next. Then type in the name SwitchViewController.m, and make sure that Also create
“SwitchViewController.h” is checked before clicking the Finish button. Xcode should add
two files to your Classes folder; the SwitchViewController class will be your root control-
ler that swaps the other views in and out. Repeat the same steps two more times to create
BlueViewController.m and YellowViewController.m, making sure to also create the correspond-
ing header files for both. These are the two content views that will get swapped in and out
by SwitchViewController.

We also need two more nib files, one for each of the two content views we just created. To
create these, single-click the Resources folder in the Groups & Files pane so that we create
them in the correct place, and then press ⌘N or select New File… from the File menu again.
This time, when the assistant window comes up, select User Interfaces under the iPhone OS
heading in the left pane (see Figure 6-10).

Figure 6-10. Creating nib files for the content views

Select the icon for the View XIB template, which will create a nib with a content view, and
then click the Next button. When prompted for a filename, type BlueView.xib. Repeat the
steps to create a second nib file called YellowView.xib. Once you’ve done that, you have all
the files you need. It’s time to start hooking everything together.

24594ch06.indd 126 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 127

Modifying the App Delegate
Our first stop on the multiview express is the application delegate. Single-click the file View_
SwitcherAppDelegate.h in the Groups & Files pane, and make the following changes to that
file:

#import <UIKit/UIKit.h>
@class SwitchViewController;
@interface View_SwitcherAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 SwitchViewController *switchViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet SwitchViewController
 *switchViewController;
@end

The IBOutlet declaration you just typed is an outlet that will point to our application’s root
controller. We need this outlet because we are about to write code that will add the root
controller’s view to our application’s main window when the application launches. By doing
that, when we go to Interface Builder and add an instance of the SwitchViewController
class to MainWindow.xib, we’ll already have an outlet to connect it to.

Now, we need to add the root controller’s view to our application’s main window. Click View_
SwitcherAppDelegate.m, and add the following code:

#import "View_SwitcherAppDelegate.h"
#import "SwitchViewController.h"
@implementation View_SwitcherAppDelegate

@synthesize window;
@synthesize switchViewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 // Override point for customization after application launch
 [window addSubview:switchViewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [window release];
 [switchViewController release];
 [super dealloc];
}
@end

24594ch06.indd 127 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications128

Besides implementing the switchViewController outlet, we are adding the root con-
troller’s view to the window. Remember, the window is the only gateway to the user, so
anything that needs to be displayed to the user has to get added as a subview of the appli-
cation’s window.

SwitchViewController.h
Because we’re going to be adding an instance of SwitchViewController to
MainWindow.xib, now is the time to add any needed outlets or actions to the
SwitchViewController.h header file.

We’ll need one action method to toggle between the two views. We won’t need any outlets,
but we will need two other pointers, one to each of the view controllers that we’re going to
be swapping in and out. These don’t need to be outlets, because we’re going to create them
in code rather than in a nib. Add the following code to SwitchViewController.h:

#import <UIKit/UIKit.h>

@class BlueViewController;
@class YellowViewController;

@interface SwitchViewController : UIViewController {
 YellowViewController *yellowViewController;
 BlueViewController *blueViewController;
}
@property (retain, nonatomic) YellowViewController *yellowViewController;
@property (retain, nonatomic) BlueViewController *blueViewController;

-(IBAction)switchViews:(id)sender;
@end

Now that we’ve declared the action we need, we can add an instance of this class to Main-
Window.xib.

Modifying MainWindow.xib
Save your source code, and double-click MainWindow.xib to open it in Interface Builder.
Four icons should appear in the nib’s main window: File’s Owner, First Responder, View_
SwitcherAppDelegate, and Window (see Figure 6-11). We need to add one more icon that
will represent an instance of our root controller. Since Interface Builder’s library doesn’t
have a SwitchViewController, we’ll have to add a view controller and change its class to
SwitchViewController.

Since the class we need to add is a subclass of UIViewController, look in the library for
View Controller (see Figure 6-12), and drag one to the nib’s main window (the window with
the icons and the title MainWindow.xib).

24594ch06.indd 128 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 129

Figure 6-11. MainWindow.xib Figure 6-12. View Controller in the library

Once you do this, your nib’s main window will now have five icons, and a new window con-
taining a dashed, gray, rounded rectangle labeled View should appear (see Figure 6-13).

Figure 6-13. The window representing your
view controller in Interface Builder

We just added an instance of UIViewController, but we actually need an instance of
SwitchViewController, so let’s change our view controller’s class to SwitchViewCon-
troller. Single-click the View Controller icon in the nib’s main window, and press ⌘4 to
open the identity inspector (see Figure 6-14).

24594ch06.indd 129 6/23/09 2:18:28 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications130

The identity inspector allows you to specify the class of the currently selected object. Our
view controller is currently specified as a UIViewController, and it has no actions defined.
Click inside the combo box labeled Class, the one at the top of the inspector that currently
reads UIViewController. Change the Class to SwitchViewController. Once you make that
change, the switchViews: action method should appear in the section labeled Class Actions
(see Figure 6-15). You should also notice that in the nib’s main window, the name of that new
icon has switched from View Controller to Switch View Controller.

Figure 6-14. The identity inspector Figure 6-15. The identity inspector after

changing the class to SwitchViewController

We now need to build our root controller’s view. The root controller’s content view will con-
sist of a toolbar that occupies the bottom of the screen.

Remember that new window that appeared when we dragged the generic view control-
ler onto the main nib window (see Figure 6-13)? We’ll build the view for our root controller,
SwitchViewController, in that window.

24594ch06.indd 130 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 131

As a reminder, SwitchViewController’s job is to switch between the blue view and the yel-
low view. To do that, it will need a way for the user to change the views, and for that, we’re
going to use a toolbar with a button. Let’s build the toolbar view now.

Drag a View from the library onto the window shown in Figure 6-13. Hint: it’s the one with a
gray background that says View. The gray background should be replaced by this new view.

Now grab a toolbar from the library, drag it onto
your view, and place it at the bottom, so that it
looks like Figure 6-16.

The toolbar features a single button. Let’s use that
button to let the user switch between the different
content views. Double-click the button, and change
its title to Switch Views. Press the return key to com-
mit your change.

Now, we can link the toolbar button to our action
method. Before we do that, though, we should
warn you: toolbar buttons aren’t like other iPhone
controls. They support only a single target action,
and they trigger that action only at one well-
defined moment, the equivalent of a Touch Up
Inside event on other iPhone controls.

Instead of using the connections inspector to
connect this button to our action, single-click the
Switch Views button, wait a second or two to avoid a
double-click, and then single-click the button again
to select it. You can confirm you have the button selected by looking at the title bar of the
attributes inspector (⌘1) and making sure it says Bar Button Item.

Once you have the Switch Views button selected, control-drag from it over to the Switch View
Controller icon, and select the switchViews: action. If the switchViews: action doesn’t pop up
and instead you see an outlet called delegate, you’ve most likely control-dragged from the
toolbar rather than the button. To fix it, just make sure you’ve got the button and not the
toolbar selected and redo your control-drag.

Earlier, we created an outlet in View_SwitcherAppDelegate.h so our application could get to
our instance of SwitchViewController and add its view to the main application window.
Now, we need to connect the instance of SwitchViewController in our nib to that outlet.
Control-drag from the View_Switcher App Delegate icon to the Switch View Controller icon,
and select the switchViewController outlet. You may see a second outlet with a similar name

Figure 6-16. Adding a toolbar to the
view controller’s view

24594ch06.indd 131 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications132

called viewController. If you do, make sure you connect to switchViewController and not
 viewController.

That’s all we need to do here, so save your nib file, and head back to Xcode so that we can
implement SwitchViewController.

Writing SwitchViewController.m
It’s time to write our root view controller. Its job is to switch between the yellow view and
the blue view whenever the user clicks the Switch Views button.

Making the following changes to SwitchViewController.m. You can feel free to delete the
commented-out methods provided by the template if you want.

#import "SwitchViewController.h"
#import "BlueViewController.h"
#import "YellowViewController.h"

@implementation SwitchViewController
@synthesize yellowViewController;
@synthesize blueViewController;

- (void)viewDidLoad
{
 BlueViewController *blueController = [[BlueViewController alloc]
 initWithNibName:@"BlueView" bundle:nil];
 self.blueViewController = blueController;
 [self.view insertSubview:blueController.view atIndex:0];
 [blueController release];
 [super viewDidLoad];
}

- (IBAction)switchViews:(id)sender
{
 if (self.yellowViewController.view.superview == nil)
 {
 if (self.yellowViewController == nil)
 {
 YellowViewController *yellowController =
 [[YellowViewController alloc] initWithNibName:@"YellowView"
 bundle:nil];
 self.yellowViewController = yellowController;
 [yellowController release];
 }

 [blueViewController.view removeFromSuperview];
 [self.view insertSubview:yellowViewController.view atIndex:0];
 }

24594ch06.indd 132 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 133

 else
 {
 if (self.blueViewController == nil)
 {
 BlueViewController *blueController =
 [[BlueViewController alloc] initWithNibName:@"BlueView"
 bundle:nil];
 self.blueViewController = blueController;
 [blueController release];
 }
 [yellowViewController.view removeFromSuperview];
 [self.view insertSubview:blueViewController.view atIndex:0];

 }
}
...

Also, add the following code to the existing didReceiveMemoryWarning method:

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview
 [super didReceiveMemoryWarning];

 // Release anything that's not essential, such as cached data
 if (self.blueViewController.view.superview == nil)
 self.blueViewController = nil;
 else
 self.yellowViewController = nil;
}

and add the following two statements to the dealloc method:

- (void)dealloc {
 [yellowViewController release];
 [blueViewController release];
 [super dealloc];
}
@end

The first method we added, viewDidLoad, overrides a UIViewController method that gets
called when the nib is loaded. How could we tell? Option–double-click the method name,
and take a look at the document that appears. The method is defined in our superclass and
is intended to be overridden by classes that need to get notified when the view has finished
loading.

We override viewDidLoad to create an instance of BlueViewController. We use the
initWithNibName method to load the BlueViewController instance from the nib file

24594ch06.indd 133 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications134

BlueView.xib. Note that the filename provided to initWithNibName does not include the
.xib extension. Once the BlueViewController is created, we assign this new instance to our
blueViewController property.

 BlueViewController *blueController = [[BlueViewController alloc]
 initWithNibName:@"BlueView" bundle:nil];
 self.blueViewController = blueController;

Next, we insert the blue view as a subview of the root view. We insert it at index zero, which
tells iPhone to put this view behind everything else. Sending the view to the back ensures
that the toolbar we created in Interface Builder a moment ago will always be visible on the
screen, since we’re inserting the content views behind it.

[self.view insertSubview:blueController.view atIndex:0];

Now, why didn’t we load the yellow view here also? We’re going to need to load it at some
point, so why not do it now? Good question. The answer is that the user may never tap the
Switch Views button. The user might come in, use the view that’s visible when the applica-
tion launches, and then quit. In that case, why use resources to load the yellow view and its
controller?

Instead, we’ll load the yellow view the first time we actually need it. This is called lazy
 loading, and it’s a standard way of keeping memory overhead down. The actual loading
of the yellow view happens in the switchViews: method, so let’s take a look at that.

switchViews: first checks which view is being swapped in by checking to see whether
 yellowViewController’s view’s superview is nil. This will return YES if one of two things
are true. First, if yellowViewController exists but its view is not being shown to the user,
that view will have no superview because it’s not presently in the view hierarchy and the
equation will evaluate to YES. Second, if yellowViewController doesn’t exist because it
hasn’t been created yet or was flushed from memory, it will also return YES.

 if (self.yellowViewController.view.superview == nil)
 {

We then check to see whether yellowViewController is nil. If it is, that means there is no
instance of yellowViewController, and we need to create one. This could happen because
it’s the first time the button has been pressed or because the system ran low on memory and
it was flushed. In this case, we need to create an instance of YellowViewController as we
did for the BlueViewController in the viewDidLoad method:

 if (self.yellowViewController == nil)
 {
 YellowViewController *yellowController =
 [[YellowViewController alloc] initWithNibName:@"YellowView"
 bundle:nil];

24594ch06.indd 134 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 135

 self.yellowViewController = yellowController;
 [yellowController release];
 }

At this point, we know that we have a yellowViewController instance, because either we
already had one or we just created it. Then, we remove blueViewController’s view from
the view hierarchy and add yellowViewController’s:

 [blueViewController.view removeFromSuperview];
 [self.view insertSubview:yellowViewController.view atIndex:0];
 }

If self.yellowViewController.view.superview is not nil, then we have to do
the same thing, but for blueViewController. Although we create an instance of
 blueViewController in viewDidLoad, it is still possible that the instance has been flushed
because memory got low. Now, in this application, the chances of memory running out are
slim, but we’re still going to be good memory citizens and make sure we have an instance
before proceeding:

 else
 {
 if (self.blueViewController == nil)
 {
 BlueViewController *blueController =
 [[BlueViewController alloc] initWithNibName:@"BlueView"
 bundle:nil];
 self.blueViewController = blueController;
 [blueController release];
 }
 [yellowViewController.view removeFromSuperview];
 [self.view insertSubview:blueViewController.view atIndex:0];

 }

In addition to not using resources for the yellow view and controller if the Switch Views but-
ton is never tapped, lazy loading also gives us the ability to release whichever view is not
being shown to free up its memory. iPhone OS will call the UIViewController method
didReceiveMemoryWarning, which is inherited by every view controller, when memory
drops below a system-determined level.

Since we know that either view will get reloaded the next time it gets shown to the user, we
can safely release either controller, something we do by adding a few lines to the existing
didReceiveMemoryWarning method:

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning]; // Releases the view if it
 // doesn't have a superview

24594ch06.indd 135 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications136

 // Release anything that's not essential, such as cached data
 if (self.blueViewController.view.superview == nil)
 self.blueViewController = nil;
 else
 self.yellowViewController = nil;
}

This newly added code checks to see which view is currently being shown to the user and
releases the controller for the other view by assigning nil to its property. This will cause
the controller, along with the view it controls, to be deallocated, freeing up its memory.
Lazy loading is a key component of resource management on iPhone and should be imple-
mented anywhere you can. In a complex, multiview application, being responsible and
flushing unused objects from memory can be the difference between an application that
works well and one that crashes periodically because it ran out of memory.

Implementing the Content Views
The two content views that we are creating in this application are extremely simple. They
each have one action method that is triggered by a button, and neither one needs any out-
lets. The two views are also nearly identical. In fact, they are so similar that they could have
been represented by the same class. We chose to make them two separate classes, because
that’s how most multiview applications are constructed. Let’s declare an action method in
each of the header files. First, in BlueViewController.h, add the following declaration:

#import <UIKit/UIKit.h>
@interface BlueViewController : UIViewController {

}
-(IBAction)blueButtonPressed;
@end

Save it, and then add the following line to YellowViewController.h:

#import <UIKit/UIKit.h>

@interface YellowViewController : UIViewController {

}
- (IBAction)yellowButtonPressed;
@end

Save this one as well, and then double-click BlueView.xib to open it in Interface Builder so we
can make a few changes. First, we have to tell it that the class that will load this nib from disk
is BlueViewController, so single-click the File’s Owner icon and press ⌘4 to bring up the
identity inspector. File’s Owner defaults to NSObject; change it to BlueViewController.

24594ch06.indd 136 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 137

Single-click the icon called View and then press ⌘1 to bring up the attribute inspector. Click
the color well that’s labeled Background, and change the background color of this view to a
nice shade of blue.

Next, we’ll change the size of the view in the nib. In the
attribute inspector, the top section is labeled Simulated
User Interface Elements. If we set these drop-downs to
reflect which top and bottom elements are used in our
application, Interface Builder will automatically calcu-
late the size of the remaining space. The status bar is
already specified. If you select the Bottom Bar pop-up,
you can select Toolbar to indicate that the enclosing
view has a toolbar. By setting this, Interface Builder will
automatically calculate the correct size for our view
so that you know how much space you have to work
with. You can press ⌘3 to bring up the size inspector to
confirm this. After making the change, the height of the
window should now be 416, and the width should still
be 320.

Drag a Round Rect Button from the library over to the
window. Double-click the button, and change its title to
Press Me. You can place the button anywhere that looks
good to you. Next, switch to the connections inspector
(by pressing ⌘2), drag from the Touch Up Inside event
to the File’s Owner icon, and connect to the blueButton-
Pressed action method.

We have one more thing to do in this nib, which is to connect the BlueViewController’s
view outlet to the view in the nib. The view outlet is inherited from the parent class,
 UIViewController, and gives the controller access to the view it controls. When we
changed the underlying class of the file’s owner, the existing outlet connections were
broken. As a result, we need to reestablish the connection from the controller to its view.
Control-drag from the File’s Owner icon to the View icon, and select the view outlet to do
that.

Save the nib, go back to Xcode, and double-click YellowView.xib. We’re going to make
almost the same exact changes to this nib file. We need to change the file’s owner from
 NSObject to YellowViewController using the identity inspector, change the view’s height to
416 pixels using the size inspector, and change the view’s background to a nice yellow color
using the attributes inspector. You’ll also need to add a round rectangular button to this
view, give it a label of Press Me, Too, and connect that button’s Touch Up Inside event to the

Figure 6-17. The Simulated User
Interface Elements section of the
View’s attributes inspector

24594ch06.indd 137 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications138

 yellowButtonPressed action method in File’s Owner. Finally, control-drag from the File’s Owner
icon to the View icon, and connect to the view outlet.

Once all that is done, save the nib, and go back to Xcode.

The two action methods we’re going to implement do nothing more than show an alert,
something you already know how to do, so go ahead and add the following code to
BlueViewController.m:

#import "BlueViewController.h"

@implementation BlueViewController

- (IBAction)blueButtonPressed
{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Blue View Button Pressed"
 message:@"You pressed the button on the blue view"
 delegate:nil
 cancelButtonTitle:@"Yep, I did."
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

...

Save, switch over to YellowViewController.m, and add this very similar code to that file:

#import "YellowViewController.h"

@implementation YellowViewController
-(IBAction)yellowButtonPressed
{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Yellow View Button Pressed"
 message:@"You pressed the button on the yellow view"
 delegate:nil
 cancelButtonTitle:@"Yep, I did."
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

...

Save it, and we’re ready to try it. When our application launches, it’ll show the view we built
in BlueView.xib, and when you tap the Switch Views button, it will change to show us the view

24594ch06.indd 138 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 139

that we built in YellowView.xib. Tap it again, and it goes back to the view we built in BlueView.
xib. Whether you tap the button on the blue or yellow view, you’ll get an alert view with a
message indicating which button was pressed. This alert shows us that the correct controller
class is getting called for the view that is being shown.

The transition between the two views is kind of abrupt, though. Gosh, if only there were
some way to make the transition look nicer.

Animating the Transition
Of course, there is a way to make the transition look nicer! We can animate the transition in
order to give the user visual feedback of the change. UIView has several class methods we
can call to indicate that the transition should be animated, to indicate the type of transition
that should be used, and to specify how long the transition should take.

Go back to SwitchViewController.m, and replace your switchViews: method with this new
version:

- (IBAction)switchViews:(id)sender
{
 [UIView beginAnimations:@"View Flip" context:nil];
 [UIView setAnimationDuration:1.25];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

 if (self.yellowViewController.view.superview == nil)
 {
 if (self.yellowViewController == nil)
 {
 YellowViewController *yellowController =
 [[YellowViewController alloc] initWithNibName:@"YellowView"
 bundle:nil];
 self.yellowViewController = yellowController;
 [yellowController release];
 }
 [UIView setAnimationTransition:
 UIViewAnimationTransitionFlipFromRight
 forView:self.view cache:YES];

 [blueViewController viewWillAppear:YES];
 [yellowViewController viewWillDisappear:YES];

 [blueViewController.view removeFromSuperview];
 [self.view insertSubview:yellowViewController.view atIndex:0];
 [yellowViewController viewDidDisappear:YES];
 [blueViewController viewDidAppear:YES];

24594ch06.indd 139 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications140

 }
 else
 {
 if (self.blueViewController == nil)
 {
 BlueViewController *blueController =
 [[BlueViewController alloc] initWithNibName:@"BlueView"
 bundle:nil];
 self.blueViewController = blueController;
 [blueController release];
 }
 [UIView setAnimationTransition:
 UIViewAnimationTransitionFlipFromLeft
 forView:self.view cache:YES];

 [yellowViewController viewWillAppear:YES];
 [blueViewController viewWillDisappear:YES];

 [yellowViewController.view removeFromSuperview];
 [self.view insertSubview:blueViewController.view atIndex:0];
 [blueViewController viewDidDisappear:YES];
 [yellowViewController viewDidAppear:YES];

 }
 [UIView commitAnimations];
}

Compile this new version, and run your application. When you tap the Switch Views button,
instead of the new view just appearing, the view will flip over, as shown in Figure 6-18.

In order to tell iPhone that we want a change animated, we need to declare an animation
block and specify how long the animation should take. Animation blocks are declared by
using the UIView class method beginAnimations:context:, like so:

 [UIView beginAnimations:@"View Flip" context:nil];
 [UIView setAnimationDuration:1.25];

beginAnimations:context: takes two parameters. The first is an animation block title.
This title comes into play only if you take more direct advantage of Core Animation, the
framework behind this animation. For our purposes, we could have used nil. The second
parameter is a (void *) that allows you to specify an object whose pointer you’d like associ-
ated with this animation block. We used nil here, since we don’t have any need to do that.

24594ch06.indd 140 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 141

Figure 6-18. The view transition animated
using the flip style

After that, we set the animation curve, which determines the timing of the animation. The
default, which is a linear curve, causes the animation to happen at a constant speed. The
option we set here indicates that it should change the speed so that it is slow at the begin-
ning and end of the transition but faster in the middle. This gives the animation a more
natural, less mechanical appearance.

 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

Next, we have to specify the transition to use. At the time of this writing, four view transi-
tions are available on the iPhone:

UIViewAnimationTransitionFlipFromLeft

UIViewAnimationTransitionFlipFromRight

UIViewAnimationTransitionCurlUp

UIViewAnimationTransitionCurlDown

24594ch06.indd 141 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications142

We chose to use two different effects, depending on which view was being swapped in.
Using a left flip for one transition and a right flip for the other will make the view seem to flip
back and forth. The cache option speeds up drawing by taking a snapshot of the view when
the animation begins and using that image rather than redrawing the view at each step of
the animation. You should always have it cache the animation unless the appearance of the
view may need to change during the animation.

 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
 forView:self.view cache:YES];

After we set the transition, we make two calls, one on each of the views being used in the
transition:

 [self.blueViewController viewWillAppear:YES];
 [self.yellowViewController viewWillDisappear:YES];

When we’re all done swapping the views, we make two more calls on those views:

 [self.yellowViewController viewDidDisappear:YES];
 [self.blueViewController viewDidAppear:YES];

The default implementations of these methods in UIViewController do nothing, so our
calls to viewDidDisappear: and viewDidAppear: don’t do anything, since our controllers
didn’t override those methods. It’s important to make these calls even if you know you’re not
using them.

Why is it important to make these calls even though they do nothing? Even though we’re
not using those methods now, we might choose to in the future. It’s also possible that
 UIViewController’s implementation to those methods won’t always be empty, so failing to
call these methods could cause our application to behave oddly after a future update of the
operating system. The performance hit for making these four calls is meaningless, since they
trigger no code, and by putting them in, we can be sure that our application will continue to
work.

When we’re all done specifying the changes to be animated, we call commitAnima-
tions on UIView. Everything between the start of the animation block and the call to
 commitAnimations will be animated together.

Thanks to Cocoa Touch’s use of Core Animation under the hood, we’re able to do fairly
sophisticated animation with only a handful of code.

24594ch06.indd 142 6/23/09 2:18:29 PM

Download at Boykma.Com

CHAPTER 6: Multiview Applications 143

Switching Off
Whoo-boy! Creating our own multiview controller was a lot of work, wasn’t it? You should
have a very good grasp on how multiview applications are put together now that you’ve
built one from scratch. Although Xcode contains project templates for the most common
types of multiview applications, you need to understand the overall structure of these types
of applications so you can build them yourself from the ground up. The delivered templates
are incredible timesavers, but at times, they simply won’t meet your needs.

In the next three chapters, we’re going to continue building multiview applications to
reinforce the concepts from this chapter and to give you a feel for how more complex appli-
cations are put together. In the next chapter, we’ll construct a tab bar application, and in the
two chapters after that, we’ll learn how to construct a navigation-based application.

24594ch06.indd 143 6/23/09 2:18:30 PM

Download at Boykma.Com

24594ch06.indd 144 6/23/09 2:18:30 PM

Download at Boykma.Com

Chapter 7

145

i
Tab Bars and
Pickers

n the previous chapter, you built your first multiview application. In this chap-
ter, you’re going to build a full tab bar application with five different tabs and
five different content views. Building this application is going to reinforce a lot
of what you learned in the previous chapter, but you’re too smart to spend a
whole chapter doing stuff you already sorta know how to do, so we’re going
to use those five content views to show you
how to use a type of iPhone control that we
have not yet covered. The control is called a
picker view, or just a picker.

You may not be familiar with the name, but
you’ve almost certainly used a picker if you’ve
owned an iPhone for more than, say, 10 min-
utes. Pickers are the controls with dials that
spin. You use them to input dates in the Cal-
endar application or to set a timer in the Clock
application (see Figure 7-1).

Pickers are rather more complex than the
iPhone controls you’ve seen so far, and as
such, they deserve a little more attention.
Pickers can be configured to display one dial
or many. By default, pickers display lists of
text, but they can also be made to display
images. Figure 7-1. A picker in the Clock

application

24594ch07.indd 145 6/23/09 11:28:58 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers146

The Pickers Application
This chapter’s application, Pickers, will feature a tab bar. As you build Pickers, you’ll change
the default tab bar so it has five tabs, add an icon to each of the tab bar items, and then
 create a series of content views and connect each to a tab.

The first content view we’ll build will have a date picker, which is the easiest type of picker
to implement (see Figure 7-2). The view will also have a button that, when tapped, will dis-
play an alert that displays the date that was picked.

The second tab will feature a picker with a single list of values (see Figure 7-3). This picker is a
little bit more work to implement than a date picker. You’ll learn how to specify the values to
be displayed in the picker by using a delegate and a datasource.

In the third tab, we’re going to create a picker with two separate wheels. The technical term
for each of these wheels is a picker component, so here we are creating a picker with two
components. We’ll see how to use the datasource and delegate to provide two independent
lists of data to the picker (see Figure 7-4). Each of this picker’s components can be changed
without impacting the other one.

Figure 7-2. The first tab will Figure 7-3. A picker displaying Figure 7-4. A two-component
show a date picker. a single list of values picker

24594ch07.indd 146 6/23/09 11:28:59 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 147

In the fourth content view, we’re going to build another picker with two components. But
this time, the values displayed in the component on the right are going to change based on
the value selected in the component on the left. In our example, we’re going to display a list
of states in the left component and a list of that state’s ZIP codes in the right component (see
Figure 7-5).

And last, but most certainly not least, we’re going to have a little fun with the fifth content
view. We’re going to see how to add image data to a picker, and we’re going to do it by
writing a little game that uses a picker with five components. In several places in Apple’s
documentation, the picker’s appearance is described as looking a bit like a slot machine.
Well, then, what could be more fitting than writing a little slot machine game (see
Figure 7-6)? For this picker, the user won’t be able to manually change the values of the
 components but will be able to select the Spin button to make the five wheels spin to
a new, randomly selected value. If three copies of the same image appear in a row, the
user wins.

Figure 7-5. In this picker, one compo-
nent is dependent on the other. As we
select a state in the left component, the
right component changes to a list of
ZIP codes in that state.

Figure 7-6. Our five component picker.
Note that we do not condone using your
iPhone as a tiny casino.

24594ch07.indd 147 6/23/09 11:28:59 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers148

Delegates and Datasources
Before we dive in and start building our application, let’s look at why pickers are so much
more complex than the other controls you’ve used so far. It’s not just a matter of there being
more configurable attributes to set in Interface Builder. In fact, the picker actually has very
few attributes that can be configured from within Interface Builder. With the exception of
the date picker, you can’t use a picker by just grabbing one in Interface Builder, dropping it
on your content view, and configuring it. You have to also provide it with both a picker del-
egate and a picker datasource.

By this point, you should be comfortable using delegates. We’ve already used application
delegates and action sheet delegates, and the basic idea is the same here. The picker defers
several jobs to its delegate. The most important of these is the task of determining what to
actually draw for each of the rows in each of its components. The picker asks the delegate for
either a string or a view that will be drawn at a given spot on a given component. The picker
gets its data from the delegate.

In addition to the delegate, pickers need to have a datasource. In this instance, the name
“datasource” is a bit of a misnomer. The datasource tells the picker how many components it
will be working with and how many rows make up each component. The datasource works
similarly to the delegate, in that its methods are called at certain, prespecified times. Without
a datasource and a delegate specified, pickers cannot do their job and, in fact, won’t even be
drawn.

It’s very common for the datasource and the delegate to be the same object, and just as
common for that object to be the view controller for the picker’s enclosing view, which is the
approach we’ll be using in this application. The view controllers for each content pane will
be the datasource and the delegate for their picker.

NOTE
Here’s a pop quiz: is the picker datasource part of the model, view, or controller portion of the application?
It’s a trick question. A datasource sounds like it must be part of the model, but in fact, it’s actually part of
the controller. The datasource isn’t usually an object designed to hold data. Though in simple applications
the datasource might hold data, its true job is to retrieve data from the model and pass it along to the
picker.

Let’s fire up Xcode and get to it.

24594ch07.indd 148 6/23/09 11:28:59 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 149

Setting Up the Tab Bar Framework
Although Xcode does provide a template for tab bar applications, we’re going to build ours
from scratch. It’s not much extra work, and it’s good practice. So, create a new project, select-
ing the Window-based Application template again. When prompted for a name, type Pickers,
and make sure the checkbox that says Use Core Data for storage is unchecked. We’re going
to walk you through the process of building the whole application, but if, at any step of the
way, you feel like challenging yourself by moving ahead of us, by all means, go ahead. If you
get stumped, you can always come back. If you don’t feel like skipping ahead, that’s just fine.
We’d love the company.

Creating the Files
In the previous chapter, we created a root controller to manage the process of swapping our
application’s other views. We’ll be doing that again this time, but we won’t need to create
our own root controller class. Apple provides a very good class for managing tab bar views,
so we’re just going to use an instance of UITabBarController as our root controller. We will
create that instance in Interface Builder in a few minutes.

First, we need to create five new classes in Xcode: the five view controllers that the root con-
troller will swap in and out.

Expand the Classes and Resources folders in the Groups & Files pane. Next, single-click the
Classes folder, and press ⌘N or select New File… from the File menu.

Select Cocoa Touch Classes in the left pane of the new file assistant, and then select the
icon for UIViewController subclass. In the bottom-right pane, just above the descrip-
tion of the selected template, you should see a checkbox labeled With XIB for user
interface (Figure 7-7). Make sure that’s checked before clicking Next. Name the first one
DatePickerViewController.m, making sure to check Also create “DatePickerViewController.h”.
After you click the Finish button, there will be three new files in your Classes folder:
DatePickerViewController.h, DatePickerViewController.m, and DatePickerViewController.xib.
The nib file doesn’t belong in the Classes folder, so drag DatePickerViewController.xib down
to the Resources folder.

Repeat those steps four more times, using the names SingleComponentPickerViewController.m,
DoubleComponentPickerViewController.m, DependentComponentPickerViewController.m, and
CustomPickerViewController.m.

24594ch07.indd 149 6/23/09 11:28:59 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers150

Figure 7-7. When creating a subclass of UIViewController, Xcode will create
the accompanying XIB file for you if you select “With XIB for user interface”.

Adding the Root View Controller
We’re going to create our root view controller, which will be an instance of
 UITabBarController, in Interface Builder. Before we can do that, however, we should
declare an outlet for it. Single-click the PickersAppDelegate.h class, and add the following
code to it:

#import <UIKit/UIKit.h>

@interface PickersAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 UITabBarController *rootController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UITabBarController *rootController;
@end

Before we move to Interface Builder to create our root view controller, let’s add the following
code to PickersAppDelegate.m:

#import "PickersAppDelegate.h"

@implementation PickersAppDelegate

24594ch07.indd 150 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 151

@synthesize window;
@synthesize rootController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch
 [window addSubview:rootController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [rootController release];
 [window release];
 [super dealloc];
}

@end

There shouldn’t be anything in this code that’s a surprise to you. This is pretty much the
same thing we did in the previous chapter, except that we’re using a controller class pro-
vided by Apple this time instead of one we wrote ourselves. Make sure you save both files
before continuing.

Tab bars use icons to represent each of the tabs, so we should also add the icons we’re going
to use before heading over to Interface Builder. You can find some suitable icons in the proj-
ect archive that accompanies this book in the 07 Pickers/Tab Bar Icons/ folder. The icons
should be 24 by 24 pixels and saved in .png format. The icon file should have a transparent
background. Generally, medium gray icons look the best on a tab bar. Don’t worry about try-
ing to match the appearance of the tab bar. Just as it does with the application icon, the
iPhone is going to take your image and make it look just right.

You should be comfortable adding resources to your
project by this point, so go ahead and add the five
icons we’ve provided by dragging them from the
Finder to the Resources folder of your Xcode project or
selecting Add to Project. . . from the Project menu.

Once you’ve added the icons, double-click
 MainWindow.xib to open the file in Interface Builder.
Drag a Tab Bar Controller from the library (see
Figure 7-8) over to the nib’s main window. Be sure you
drag to the window labeled MainWindow.xib and not
to the window labeled Window, which will not accept
the drag, so you’ll know when you get it right.

Figure 7-8. Tab Bar Controller in the
library

24594ch07.indd 151 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers152

Once you drop the tab bar controller onto your nib’s main window, a new window will
appear that looks like Figure 7-9. This tab bar controller will be our root controller. As a
reminder, the root controller controls the very first view that the user will see when your
 program runs.

Single-click the Tab Bar Controller icon in your nib’s main window, and press ⌘1 to bring up
the attributes inspector for it. The attributes inspector for a tab bar controller will look like
Figure 7-10.

The part that we’re interested in is the top section, which is labeled View Controllers. When all
is said and done, we’ll end up with one view controller for each of our tab controller’s tabs.
Take a look back at Figure 7-2. As you can see, our program features five tabs, one for each of
our five subviews—five subviews, five view controllers.

Turn your attention back to the attributes inspector for the tab bar controller. We need to
change our tab bar controller so it has five tabs instead of two. Click the button with the plus
sign on it three times to create a total of five controllers. The attributes inspector will show
five items, and if you look over at the Tab Bar Controller window, you’ll see that it now has
five buttons instead of two.

Figure 7-9. The tab bar controller’s window Figure 7-10. The attributes inspector for

the tab bar controller

24594ch07.indd 152 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 153

Click the tab bar at the bottom of the Tab Bar Controller
window. Be sure you click the leftmost tab. This should
select the controller that corresponds to the leftmost
tab, and the inspector should change to look like Fig-
ure 7-11. If your inspector doesn’t look like Figure 7-11,
click the second tab and then back on the first tab.

Here’s where we associate each tab’s view controller
with the appropriate nib. This leftmost tab will launch
the first of our five subviews. Leave the Title field blank.
Tab bar controllers don’t use this title for anything, though some other kinds of view control-
lers do. The checkbox labeled Wants Full Screen can be used to indicate that the view that
comes up when you press that tab will overlap and hide the tabs bar. If you check this
 checkbox, you must provide an alternative mechanism for navigating off that tab. We will
leave this value unchecked for all of our tabs. Finally, specify a NIB Name of DatePickerView-
Controller. Do not include the .xib extension. Leave the Resize View From NIB checkbox
checked. This won’t apply to us, since we’ll design our views to not need resizing.

While you are here, press ⌘4. This will bring up the
identity inspector for the view controller associated
with the leftmost tab. Change the class to DatePicker-
ViewController, and press return or tab to set it.

Press ⌘1 to return to the attributes inspector. Click the
first tab in the tab bar, and click it again in the same
spot. This should cause the inspector to change again,
so it looks like Figure 7-12.

By clicking the tab bar again in the same spot, we’ve
changed the selection from the view controller associ-
ated with the tab bar item to the tab bar item itself. In
other words, the first click selected the first of the five subview’s view controllers. The second
click selects the tab bar item itself so that we can set its title and icon.

The first item on the Tab Bar Item inspector is labeled Badge. This can be used to put a red
icon onto a tab bar item, similar to the red number placed on the Mail icon that tells you
how many unread e-mails you have. We’re not going to use the badge field in this chapter,
so you can leave it blank, but we thought you’d want to know what it does.

Under that, there’s a pop-up button called Identifier. This field allows you to select from a set
of commonly used tab bar item names and icons such as Favorites and Search. If you select
one of these, then it will provide the name and icon for the item based on your selection.
We’re not using standard items, so you can ignore this one for now also.

Figure 7-11. The view controller
attributes inspector

Figure 7-12. The tab bar item attri-
butes inspector

24594ch07.indd 153 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers154

The next two fields down are where we can specify a title and custom tab icon for a tab
bar item. Change the Title from Item 1 to Date, click the Image combo box, and select the
clockicon.png image. If you are using your own set of icons, select one of the .png files you
provided instead. For the rest of this chapter, we’ll discuss the resources we provided. Make
adjustments for your own media, as necessary.

If you look over at the Tab Bar Controller window, you’ll see that the leftmost tab bar item
now reads Date and has a picture of a clock on it. We now need to repeat this process for the
other four tab bar items.

Before we do, let’s revisit what we just did. First, we single-clicked the first tab and used the
attributes inspector to specify the nib name for that first tab’s associated view controller.
Next, we opened the identity inspector and changed the underlying class of the view con-
troller associated with this tab.

We then clicked the tab again to edit the tab bar item, instead of the view controller. We
gave the tab bar item a title and an icon.

Let’s repeat this for the next four view controller/tab bar item pairings.

Click the second tab, and bring up the attributes inspector. Change the second view control-
ler’s nib name to SingleComponentPickerViewController. Switch to the identity inspector, and
change the view controller’s class to SingleComponentPickerViewController. Click the second
tab again, and return to the attributes inspector. Give the second tab bar item a title of Sin-
gle, and specify an Image of singleicon.png.

Click the third tab, and bring up the attributes inspector. Change the third view controller’s
nib name to DoubleComponentPickerViewController. Switch to the identity inspector, and
change the view controller’s class to DoubleComponentPickerViewController. Click the third
tab again, and return to the attributes inspector. Give the third tab bar item a title of Double,
and specify an Image of doubleicon.png.

Click the fourth tab, and bring up the attributes inspector. Change the fourth view control-
ler’s nib name to DependentComponentPickerViewController. Switch to the identity inspector,
and change the view controller’s class to DependentComponentPickerViewController. Click the
fourth tab again, and return to the attributes inspector. Give the fourth tab bar item a title of
Dependent, and specify an Image of dependenticon.png.

Click the fifth tab, and bring up the attributes inspector. Change the fifth view controller’s
nib name to SinglePickerViewController. Switch to the identity inspector, and change the
view controller’s class to CustomPickerViewController. Click the fifth tab again, and return to
the attributes inspector. Give the fifth tab bar item a title of Custom, and specify an Image of
toolicon.png.

24594ch07.indd 154 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 155

NOTE
Don’t worry about the view controller Title fields. We don’t use them. They can be blank or not. We do use
the tab bar item Title fields. Don’t confuse the two.

All that we have left to do in this nib file is to control-drag from the Pickers App Delegate icon
to the Tab Bar Controller icon, selecting the rootController outlet. Save your nib, and go back
to Xcode.

At this point, the tab bar and the content views should all be hooked up and working. Com-
pile and run, and your application should launch with a toolbar that functions; clicking a tab
should select it.

There’s nothing in the content views now, so the changes won’t be very dramatic. But if
everything went OK, the basic framework for your multiview application is now set up and
working, and we can start designing the individual content views.

TIP
If your simulator bursts into flames when you click one of the tabs, don’t panic! Most likely, you’ve either
missed a step or made a typo. Go back and check all the nib file names, make sure the connections are
right, and make sure the class names are all set correctly.

If you want to make double sure everything is working, you can add a different label or some
other object to each of the content views and then relaunch the application. If everything is
working, you’ll see the content of the different views change as you select different tabs.

Implementing the Date Picker
To implement the date picker, we’ll need a single outlet and a single action. The outlet
will be used to grab the value from the date picker. The action will be triggered by a but-
ton and will throw up an alert to show the date value pulled from the picker. Single-click
DatePickerViewController.h, and add the following code:

24594ch07.indd 155 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers156

#import <UIKit/UIKit.h>

@interface DatePickerViewController : UIViewController {
 UIDatePicker *datePicker;
}
@property (nonatomic, retain) IBOutlet UIDatePicker *datePicker;
-(IBAction)buttonPressed;
@end

Save this file, and double-click DatePickerViewController.xib to open the content view for this
first tab in Interface Builder. The first thing we need is to size the view correctly for the space
available. The easiest way to do that is to single-click the View icon and press ⌘1 to bring up
the attributes inspector. We can use the Simulated Interface Elements to have Interface
Builder size this view correctly by setting the Bottom Bar popup to Tab Bar. This will cause
Interface Builder to automatically reduce the view’s height to 411 pixels and show a simu-
lated tab bar.

 Next, we need to add a date picker to this view, so
look for Date Picker in the library (see Figure 7-13), and
drag one over to the View window. If the View window
is not open, open it by double-clicking the View icon
in the nib’s main window.

Place the date picker right at the top of the view. It
should take up the entire width of your content view
and a good portion of the height. Don’t use the blue
guidelines for the picker; it’s designed to fit snugly
against the edges of the view (see Figure 7-14).

Single-click the date picker if it’s not already selected, and press ⌘1 to bring up the attri-
butes inspector. As you can see (in Figure 7-15), a number of attributes can be configured
for a date picker. You won’t get off this easy with the rest of the pickers, so enjoy it while you
can. We’re going to leave most of the values at their defaults, though you should feel free
to play with the options when we’re done to see what they do. The one thing we are going
to do is limit the range of the picker to reasonable dates. Look for the heading that says
Constraints, and check the box that reads Minimum Date. Leave the Minimum date value at
the default of 1/1/1970. Also check the box that reads Maximum Date, and set Maximum to
12/31/2200.

Next, grab a Round Rect Button from the library, and place it below the date picker. Double-
click it, and give it a title of Select, and press ⌘2 to switch to the connections inspector. Drag
from the circle next to the Touch Up Inside event over to the File’s Owner icon, and connect
to the buttonPressed action. Then control-drag from the File’s Owner icon back to the date
picker, and select the datePicker outlet. Save, close the nib, and go back to Xcode.

Figure 7-13. The Date Picker in the
library

24594ch07.indd 156 6/23/09 11:29:00 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 157

Figure 7-14. Place all pickers right up
against the edges of the view, either at
the top or bottom of the view.

Figure 7-15. The attributes inspector
for a date picker

Now we just need to implement DatePickerViewController, so click
DatePickerViewController.m, and first, add the following code at the top of the file:

#import "DatePickerViewController.h"

@implementation DatePickerViewController
@synthesize datePicker;

-(IBAction)buttonPressed {
 NSDate *selected = [datePicker date];
 NSString *message = [[NSString alloc] initWithFormat:
 @"The date and time you selected is: %@", selected];

24594ch07.indd 157 6/23/09 11:29:01 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers158

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Date and Time Selected"
 message:message
 delegate:nil
 cancelButtonTitle:@"Yes, I did."
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [message release];
}
- (void)viewDidLoad {
 NSDate *now = [[NSDate alloc] init];
 [datePicker setDate:now animated:NO];
 [now release];
}
...

Next, add two lines to the existing viewDidUnload: method:

- (void)viewDidUnload {

 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.datePicker = nil;
 [super viewDidUnload];
}

and one line to the existing dealloc method:

- (void)dealloc {
 [datePicker release];
 [super dealloc];
}

The first thing we did was to synthesize the accessor and mutator for our datePicker out-
let; then we added the implementation of buttonPressed and overrode viewDidLoad. In
buttonPressed, we use our datePicker outlet to get the current date value from the date
picker, and then we construct a string based on that date and use it to show an alert sheet.

In viewDidLoad, we created a new NSDate object. An NSDate object created this way will
hold the current date and time. We then set datePicker to that date, which ensures that
every time this view gets loaded from the nib, the picker will reset to the current date and
time.

Go ahead and build and run to make sure your date picker checks out. If everything went
OK, your application should look like Figure 7-2 when it runs. If you click the Select button,
an alert sheet will pop up telling you the date and time currently selected in the date picker.

24594ch07.indd 158 6/23/09 11:29:01 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 159

Though the date picker does not allow you to specify seconds or a time zone, the alert that
displays the selected date and time displays both seconds and a time zone offset. We could
have added some code to simplify the string displayed in the alert, but isn’t this chapter long
enough already?

Implementing the Single Component Picker
Well, date pickers are easy enough, but let’s look at using pickers that let the user select from
a list of values. In this example, we’re going to create an NSArray to hold the values we want
to display in the picker. Pickers don’t hold any data themselves. Instead, they call methods
on their datasource and delegate to get the data they need to display. The picker doesn’t
really care where the underlying data is. It asks for the data when it needs it, and the data-
source and delegate work together to supply that data. As a result, the data could be coming
from a static list, as we’ll do in this section, or could be loaded from a file or a URL, or even
made up or calculated on the fly.

Declaring Outlets and Actions
As always, we need to make sure our outlets and actions are in place in our controller’s
header file before we start working in Interface Builder. In Xcode, single-click SingleCompo-
nentPickerViewController.h. This controller class will act as both the datasource and the del-
egate for its picker, so we need to make sure it conforms to the protocols for those two roles.
In addition, we’ll need to declare an outlet and an action. Add the following code:

#import <UIKit/UIKit.h>

@interface SingleComponentPickerViewController : UIViewController
 <UIPickerViewDelegate, UIPickerViewDataSource> {
 UIPickerView *singlePicker;
 NSArray *pickerData;
}
@property (nonatomic, retain) IBOutlet UIPickerView *singlePicker;
@property (nonatomic, retain) NSArray *pickerData;
- (IBAction)buttonPressed;
@end

We start by conforming our controller class to two protocols, UIPickerViewDelegate and
UIPickerViewDataSource. After that, we declare an outlet for the picker and a pointer to
an NSArray, which will be used to hold the list of items that will be displayed in the picker.
Finally, we declare the action method for the button, just as we did for the date picker.

24594ch07.indd 159 6/23/09 11:29:02 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers160

Building the View
Double-click SingleComponentPickerViewController.xib
to open the content view for the second tab in our tab
bar. Single-click the View icon and press ⌘1 to bring
up the attributes inspector so you can set the Bottom
Bar to Tab Bar in the Simulated Interface Elements sec-
tion. Next, bring over a Picker View from the library
(see Figure 7-16), and add it to your nib’s View window,
placing it snugly into the top of the view as you did
with the date picker view.

After placing the picker, control-drag from File’s
Owner to the picker view, and select the singlePicker outlet. Next, single-click the picker if
it’s not already selected, and press ⌘2 to bring up the connections inspector. If you look at
the connections available for the picker view, you’ll see that the first two items are Data-
Source and Delegate. Drag from the circle next to DataSource to the File’s Owner icon. Then
drag again from the circle next to Delegate to the File’s Owner icon. Now this picker knows
that the instance of the SingleComponentPickerViewController class in the nib is its
datasource and delegate and will ask it to supply the data to be displayed. In other words,
when the picker needs information about the data it is going to display, it asks the
SingleComponentPickerViewController instance that controls this view for that
 information.

Drag a Round Rect Button to the view, double-click it, and give it a title of Select. Press return
to commit the change. In the connections inspector, drag from the circle next to Touch Up
Inside to the File’s Owner icon, selecting the buttonPressed action. Save the nib file, close it,
and go back to Xcode.

Implementing the Controller as Datasource and Delegate
To make our controller work properly as the picker’s datasource and delegate, we are going
to have to implement a few methods that you’ve never seen before. Single-click SingleComp
onentPickerViewController.m, and add the following code at the beginning of the file:

#import "SingleComponentPickerViewController.h"

@implementation SingleComponentPickerViewController
@synthesize singlePicker;
@synthesize pickerData;
- (IBAction)buttonPressed {
 NSInteger row = [singlePicker selectedRowInComponent:0];
 NSString *selected = [pickerData objectAtIndex:row];
 NSString *title = [[NSString alloc] initWithFormat:
 @"You selected %@!", selected];

Figure 7-16. The Picker View in the
library

24594ch07.indd 160 6/23/09 11:29:02 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 161

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title
 message:@"Thank you for choosing."
 delegate:nil
 cancelButtonTitle:@"You're Welcome"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [title release];
}
- (void)viewDidLoad {
 NSArray *array = [[NSArray alloc] initWithObjects:@"Luke", @"Leia",
 @"Han", @"Chewbacca", @"Artoo", @"Threepio", @"Lando", nil];
 self.pickerData = array;
 [array release];
}
...

These two methods should be familiar to you by now. The buttonPressed method is nearly
identical to the one we used with the date picker. Unlike the date picker, a regular picker
can’t tell us what data it holds, because it doesn’t maintain the data. It hands that job off to
the delegate and datasource. Instead, we have to ask the picker which row is selected and
then grab the corresponding data from our pickerData array.

Here is how we ask it for the selected row:

NSInteger row = [singlePicker selectedRowInComponent:0];

Notice that we had to specify which component we want to know about. We have only one
component in this picker, so we simply pass in 0, which is the index of the first component.

NOTE
Did you notice that there is no asterisk between NSInteger and row? Although on the iPhone the pre-
fix “NS” often indicates an Objective-C class from the Foundation framework, this is one of the exceptions
to that general rule. NSInteger is always defined as an integer datatype, either an int or a long. We
use NSInteger rather than int or long, because when we use NSInteger, the compiler automati-
cally chooses whichever size is best for the platform for which we are compiling. It will create a 32-bit int
when compiling for a 32-bit processor and a longer 64-bit long when compiling for a 64-bit architecture.
Currently, there is no 64-bit iPhone, but who knows? Someday in the future, there may be. You might also
write classes for your iPhone applications that you’ll later want to recycle and use in Cocoa applications for
Mac OS X, which already does run on both 32- and 64-bit machines.

In viewDidLoad, we create an array with several objects so that we have data to feed the
picker. Usually, your data will come from other sources, like a property list in your project’s

24594ch07.indd 161 6/23/09 11:29:02 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers162

Resources folder. By embedding a list of items in our code the way we’ve done here, we are
making it much harder on ourselves if we need to update this list or if we want to have our
application translated into other languages. But this approach is the quickest and easiest
way to get data into an array for demonstration purposes. Even though you won’t usually
create your arrays like this, you will almost always cache the data you are using into an array
here in the viewDidLoad method so that you’re not constantly going to disk or to the net-
work every time the picker asks you for data.

TIP
If you’re not supposed to create arrays from lists of objects in your code as we just did in viewDidLoad,
how should you do it? Embed the lists in property list files, and add those files to the Resources folder of
your project. Property list files can be changed without recompiling your source code, which means no risk
of introducing new bugs when you do so. You can also provide different versions of the list for different
languages, as you’ll see in Chapter 17. Property lists can be created using the Property List Editor applica-
tion located at /Developer/Applications/Utilities/Property List Editor.app or right in Xcode, which supports
the editing of property lists in the editor pane. Both NSArray and NSDictionary offer a method
called initWithContentsOfFile: to allow you to initialize instances from a property file, some-
thing we’ll do in this chapter when implementing the Dependent tab.

Next, insert the following new lines of code into the existing viewDidUnload and dealloc
methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.singlePicker = nil;
 self.pickerData = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [singlePicker release];
 [pickerData release];
 [super dealloc];
}
...

One thing to notice here is that we’ve set both singlePicker and pickerData to nil. In
most cases, you’ll set only outlets to nil and not other instance variables. However, setting
pickerData to nil is appropriate here because the pickerData array will get re-created
each time the view gets reloaded, and we want to free up that memory when the view

24594ch07.indd 162 6/23/09 11:29:02 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 163

is unloaded. Anything that gets created in the viewDidLoad method can be flushed in
 viewDidUnload because viewDidLoad will fire again when the view gets reloaded.

Finally, insert the following new code at the end of the file:

#pragma mark -
#pragma mark Picker Data Source Methods
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 1;
}
- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 return [pickerData count];
}
#pragma mark Picker Delegate Methods
- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [pickerData objectAtIndex:row];
}
@end

At the bottom of the file, we get into the new methods required to implement the picker.
The first two methods after dealloc are from the UIPickerViewDataSource protocol, and
they are both required for all pickers (except date pickers). Here’s the first one:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 1;
}

Pickers can have more than one spinning wheel, or component, and this is how the picker
asks how many components it should display. We want to display only one list this time, so
we simply return a value of 1. Notice that a UIPickerView is passed in as a parameter. This
parameter points to the picker view that is asking us the question, which makes it possible
to have multiple pickers being controlled by the same datasource. In our case, we know that
we have only one picker, so we can safely ignore this argument because we already know
which picker is calling us.

The second datasource method is used by the picker to ask how many rows of data there are
for a given component:

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 return [pickerData count];
}

24594ch07.indd 163 6/23/09 11:29:02 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers164

#PRAGMA WHAT?
Did you notice these lines of code from SingleComponentPickerViewController.m?

#pragma mark -
#pragma mark Picker Data Source Methods

Any line of code that begins with #pragma is technically a compiler directive, specifically, a pragmatic,
or compiler-specific, directive that won’t necessarily work with other compilers or in other environments. If
the compiler doesn’t recognize the directive, it ignores it, though it may generate a warning. In this case, the
#pragma directives are actually directives to the IDE, not the compiler, and they tell Xcode’s editor to put a
break in the pop-up menu of methods and functions at the top of the editor pane, as shown in the following
screen shot. The first one puts a divider line in the menu. The second creates a bold entry.

Some of your classes, especially some of your controller classes, are likely to get rather long, and the methods
and functions pop-up menu makes navigating around your code much easier. Putting in #pragma directives
and logically organizing your code will make that pop-up more efficient to use.

Once again, we are told which picker view is asking and which component that picker is
asking about. Since we know that we have only one picker and one component, we don’t
bother with either of the arguments and simply return the count of objects from our sole
data array.

24594ch07.indd 164 6/23/09 11:29:03 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 165

After the two datasource methods, we implement one delegate method. Unlike the data-
source methods, all of the delegate methods are optional. The term “optional” is a bit
deceiving because you do have to implement at least one delegate method. You will usually
implement the method that we are implementing here. As you’ll see when we get to the
custom picker, if you want to display something other than text in the picker, you have to
implement a different method instead.

- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [pickerData objectAtIndex:row];
}

In this method, the picker is asking us to provide the data for a specific row in a specific
component. We are provided with a pointer to the picker that is asking, along with the com-
ponent and row that it is asking about. Since our view has one picker with one component,
we simply ignore everything except the row argument and use that to return the appropri-
ate item from our data array.

Go ahead and compile and run again. When the simulator comes up, switch to the second
tab—the one labeled Single—and check out your new custom picker, which should look like
Figure 7-3.

When you’re done reliving all those Star Wars memories, come on back to Xcode and we’ll
see how to implement a picker with two components. If you feel up to a challenge, this next
content view is actually a good one for you to attempt on your own. You’ve already seen all
the methods you’ll need for this picker, so go ahead, take a crack at it. We’ll wait here. You
might want to start off with a good look at Figure 7-4, just to refresh your memory. When
you’re done, read on, and you’ll see how we tackled this problem.

Implementing a Multicomponent Picker
The next content pane will have a picker with two components or wheels, and each wheel
will be independent of the other wheel. The left wheel will have a list of sandwich fillings,
and the right wheel will have a selection of bread types. As we mentioned a moment ago,
we’ll write the same datasource and delegate methods that we did for the single component
picker; we’ll just have to write a little additional code in some of those methods to make sure
we’re returning the right value and row count for each component.

Declaring Outlets and Actions
Single-click DoubleComponentPickerViewController.h, and add the following code:

24594ch07.indd 165 6/23/09 11:29:03 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers166

#import <UIKit/UIKit.h>

#define kFillingComponent 0
#define kBreadComponent 1

@interface DoubleComponentPickerViewController : UIViewController
 <UIPickerViewDelegate, UIPickerViewDataSource>
{
 UIPickerView *doublePicker;
 NSArray *fillingTypes;
 NSArray *breadTypes;
}
@property(nonatomic, retain) IBOutlet UIPickerView *doublePicker;
@property(nonatomic, retain) NSArray *fillingTypes;
@property(nonatomic, retain) NSArray *breadTypes;
-(IBAction)buttonPressed;
@end

As you can see, we start out by defining two constants that will represent the two compo-
nents, which is just to make our code easier to read. Components are assigned numbers,
with the leftmost component being assigned zero and increasing by one each move to the
right.

Next, we conform our controller class to both the delegate and datasource protocols, and
we declare an outlet for the picker, as well as for two arrays to hold the data for our two
picker components. After declaring properties for each of our instance variables, we declare
a single action method for the button, just as we did in the last two context panes. Save this,
and double-click DoubleComponentPickerViewController.xib to open the nib file in Interface
Builder.

Building the View
Select the View icon, and use the attributes inspector to set the Bottom Bar to Tab Bar in the
Simulated Interface section.

Add a picker and a button to the View, and then make the necessary connections. We’re not
going to walk you through it this time, but you can refer to the previous section if you need
a step-by-step guide, since the two applications are identical in terms of the nib file. Here’s a
summary of what you need to do:

 1. Connect the doublePicker outlet on File’s Owner to the picker.

 2. Connect the DataSource and Delegate connections on the picker view to File’s Owner
(use the connections inspector).

 3. Connect the Touch Up Inside event of the button to the buttonPressed action on File’s
Owner (use the connections inspector).

24594ch07.indd 166 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 167

Make sure you save your nib and close it before you head back to Xcode. Oh, and dog-ear
this page (or use a bookmark, if you prefer). You’ll be referring to it in a bit.

Implementing the Controller
Single-click DoubleComponentPickerViewController.m, and add the following code at the top
of the file:

#import "DoubleComponentPickerViewController.h"

@implementation DoubleComponentPickerViewController
@synthesize doublePicker;
@synthesize fillingTypes;
@synthesize breadTypes;
-(IBAction)buttonPressed
{
 NSInteger breadRow = [doublePicker selectedRowInComponent:
 kBreadComponent];
 NSInteger fillingRow = [doublePicker selectedRowInComponent:
 kFillingComponent];

 NSString *bread = [breadTypes objectAtIndex:breadRow];
 NSString *filling = [fillingTypes objectAtIndex:fillingRow];

 NSString *message = [[NSString alloc] initWithFormat:
 @"Your %@ on %@ bread will be right up.", filling, bread];

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 @"Thank you for your order"
 message:message
 delegate:nil
 cancelButtonTitle:@"Great!"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [message release];

}
- (void)viewDidLoad {
 NSArray *breadArray = [[NSArray alloc] initWithObjects:@"White",
 @"Whole Wheat", @"Rye", @"Sourdough", @"Seven Grain",nil];
 self.breadTypes = breadArray;
 [breadArray release];

 NSArray *fillingArray = [[NSArray alloc] initWithObjects:@"Ham",
 @"Turkey", @"Peanut Butter", @"Tuna Salad",
 @"Chicken Salad", @"Roast Beef", @"Vegemite", nil];
 self.fillingTypes = fillingArray;

24594ch07.indd 167 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers168

 [fillingArray release];
}
...

Also, add the following lines of code to the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.doublePicker = nil;
 self.breadTypes = nil;
 self.fillingTypes = nil;
 [super viewDidUnload];

}

- (void)dealloc {
 [doublePicker release];
 [breadTypes release];
 [fillingTypes release];
 [super dealloc];
}
...

And add the delegate and datasource methods at the bottom:

#pragma mark -
#pragma mark Picker Data Source Methods
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 2;
}
- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 if (component == kBreadComponent)
 return [self.breadTypes count];

 return [self.fillingTypes count];
}
#pragma mark Picker Delegate Methods
- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 if (component == kBreadComponent)
 return [self.breadTypes objectAtIndex:row];

24594ch07.indd 168 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 169

 return [self.fillingTypes objectAtIndex:row];
}
@end

The buttonPressed method is a little more involved this time, but there’s very little there
that’s new to you; we just have to specify which component we are talking about when we
request the selected row using those constants we defined earlier, kBreadComponent and
kFillingComponent.

NSInteger breadRow = [doublePicker selectedRowInComponent:
 kBreadComponent];
NSInteger fillingRow = [doublePicker selectedRowInComponent:
 kFillingComponent];

You can see here that using the two constants instead of 0 and 1 makes our code consider-
ably more readable. From this point on, the buttonPressed method is fundamentally the
same as the last one we wrote.

viewDidLoad: is also very similar to the one we wrote for the previous section. The only
difference is that we are loading two arrays with data rather than just one. Again, we’re just
creating arrays from a hard-coded list of strings, something you generally won’t do in your
own applications.

When we get down to the datasource methods, that’s where things start to change a bit. In
the first method, we specify that our picker should have two components rather than just one:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 2;
}

Easy enough. This time, when we are asked for the number of rows, we have to check which
component the picker is asking about and return the correct row count for the correspond-
ing array:

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 if (component == kBreadComponent)
 return [self.breadTypes count];

 return [self.fillingTypes count];
}

Then, in our delegate method, we do the same thing. We check the component and use the
correct array for the requested component to fetch and return the right value.

24594ch07.indd 169 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers170

- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 if (component == kBreadComponent)
 return [self.breadTypes objectAtIndex:row];

 return [self.fillingTypes objectAtIndex:row];
}

That wasn’t so hard, was it? Compile and run your application, and make sure the Double
content pane looks like Figure 7-4. Notice that each wheel is completely independent of the
other one. Turning one has no effect on the other. That’s appropriate in this case. But there
are going to be times when one component is dependent on another. A good example of
this is in the date picker. When you change the month, the dial that shows the number of
days in the month may have to change because not all months have the same number of
days. Implementing this isn’t really hard once you know how, but it’s not the easiest thing to
figure out on your own, so let’s do that next.

Implementing Dependent Components
We’re picking up steam now. For this next section, we’re not going to hold your hand quite
as much when it comes to material we’ve already covered. Instead, we’ll focus on the new
stuff. Our new picker will display a list of US states in the left component and a list of ZIP
codes in the right component that correspond to the state currently selected in the left.

We’ll need a separate list of ZIP code values for each item in the left-hand component.
We’ll declare two arrays, one for each component, as we did last time. We’ll also need an
 NSDictionary. In the dictionary, we’re going to have an NSArray for each state (see Fig-
ure 7-16). Later, we’ll implement a delegate method that will notify us when the picker’s
selection changes. If the value on the left changes, we will grab the correct array out of the
dictionary and assign it to the array being used for the right-hand component. Don’t worry if
you didn’t catch all that; we’ll talk about it more as we get into the code.

24594ch07.indd 170 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 171

NSDictionary
Alabama
Alaska
Arizona

Arkansas

NSArray
NSArray
NSArray
NSArray

NSArray
12345
12346
12347
12348

...

NSArray
12345
12346
12347
12348

...

NSArray
12354
12356
12357
12358

...

Figure 7-17. Our application’s data: for each state there will be one entry
in a dictionary with the name of the state as the key. Stored under that key
will be an NSArray instance containing all the ZIP codes from that state.

Add the following code to your DependentComponentPickerViewController.h file:

#import <UIKit/UIKit.h>
#define kStateComponent 0
#define kZipComponent 1

@interface DependentComponentPickerViewController : UIViewController
 <UIPickerViewDelegate, UIPickerViewDataSource> {
 UIPickerView *picker;

 NSDictionary *stateZips;
 NSArray *states;
 NSArray *zips;
}
@property (retain, nonatomic) IBOutlet UIPickerView *picker;
@property (retain, nonatomic) NSDictionary *stateZips;
@property (retain, nonatomic) NSArray *states;
@property (retain, nonatomic) NSArray *zips;
- (IBAction) buttonPressed;
@end

Now move to Interface Builder, and build the content view. That process will be almost iden-
tical to the last two component views we built. If you get lost, flip back a few pages to the

24594ch07.indd 171 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers172

last Building the View section, and follow those step-by-step instructions. Here’s a hint: start
off by opening DependentComponentPickerViewController.xib. When you’re done, make sure
you save, close the nib, and then come back to Xcode.

OK, take a deep breath. Let’s implement this controller class. This implementation may seem
a little gnarly at first. By making one component dependent on the other, we have added a
whole new level of complexity to our controller class. Although the picker displays only two
lists at a time, our controller class has to know about and manage fifty-one lists. The tech-
nique we’re going to use here actually simplifies that process. The datasource methods look
almost identical to the one we implemented for the DoublePicker view. All of the additional
complexity is handled elsewhere, between viewDidLoad and a new delegate method called
pickerView:didSelectRow:inComponent:.

Before we write the code, we need some data to display, however. Up to now, we’ve created
arrays in code by specifying a list of strings. But, we’ve also told you you’re not going to do
it that way. So, because we didn’t want you to have to type in several thousand values and
because we figured we ought to show you the correct way to do this, we’re going to load the
data from a property list. As we’ve mentioned, both NSArray and NSDictionary objects can
be created from property lists. We’ve included a property list called statedictionary.plist in the
projects archive, under the 07 Pickers folder.

Add that file into the Resources area in your Xcode project. If you single-click it in the project
window, you can see and even edit the data that it contains (see Figure 7-18).

Figure 7-18. The statedictionary.plist file

24594ch07.indd 172 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 173

Now, let’s write some code. Add the following to DependentComponentPickerViewController.m,
and then we’ll break it down into more digestible chunks:

#import "DependentComponentPickerViewController.h"

@implementation DependentComponentPickerViewController
@synthesize picker;
@synthesize stateZips;
@synthesize states;
@synthesize zips;

- (IBAction) buttonPressed {
 NSInteger stateRow = [picker selectedRowInComponent:kStateComponent];
 NSInteger zipRow = [picker selectedRowInComponent:kZipComponent];

 NSString *state = [self.states objectAtIndex:stateRow];
 NSString *zip = [self.zips objectAtIndex:zipRow];

 NSString *title = [[NSString alloc] initWithFormat:
 @"You selected zip code %@.", zip];
 NSString *message = [[NSString alloc] initWithFormat:
 @"%@ is in %@", zip, state];

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [title release];
 [message release];
}

- (void)viewDidLoad {

 NSBundle *bundle = [NSBundle mainBundle];
 NSString *plistPath = [bundle pathForResource:
 @"statedictionary" ofType:@"plist"];

 NSDictionary *dictionary = [[NSDictionary alloc]
 initWithContentsOfFile:plistPath];
 self.stateZips = dictionary;
 [dictionary release];

 NSArray *components = [self.stateZips allKeys];
 NSArray *sorted = [components sortedArrayUsingSelector:

24594ch07.indd 173 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers174

 @selector(compare:)];
 self.states = sorted;

 NSString *selectedState = [self.states objectAtIndex:0];
 NSArray *array = [stateZips objectForKey:selectedState];
 self.zips = array;
}
...

Next, add the following lines of code to the existing viewDidUnload and dealloc methods:

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.picker = nil;
 self.stateZips = nil;
 self.states = nil;
 self.zips = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [picker release];
 [stateZips release];
 [states release];
 [zips release];
 [super dealloc];
}

And, finally, add the delegate and datasource methods at the bottom of the file:

...
#pragma mark -
#pragma mark Picker Data Source Methods
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 2;
}
- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 if (component == kStateComponent)
 return [self.states count];
 return [self.zips count];
}
#pragma mark Picker Delegate Methods
- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 if (component == kStateComponent)

24594ch07.indd 174 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 175

 return [self.states objectAtIndex:row];
 return [self.zips objectAtIndex:row];
}

- (void)pickerView:(UIPickerView *)pickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 if (component == kStateComponent) {
 NSString *selectedState = [self.states objectAtIndex:row];
 NSArray *array = [stateZips objectForKey:selectedState];
 self.zips = array;
 [picker selectRow:0 inComponent:kZipComponent animated:YES];
 [picker reloadComponent:kZipComponent];
 }
}
@end

There’s no need to talk about the buttonPressed method; it’s fundamentally the same as
the last one. We should talk about the viewDidLoad method, though. There’s some stuff
going on there that you need to understand, so pull up a chair, and let’s chat.

The first thing we do in this new viewDidLoad method is grab a reference to our applica-
tion’s main bundle.

NSBundle *bundle = [NSBundle mainBundle];

What is a bundle, you ask? Well, a bundle is just a special type of folder whose contents fol-
low a specific structure. Applications and frameworks are both bundles, and this call returns
a bundle object that represents our application. One of the primary uses of NSBundle is
to get to resources that you added to the Resources folder of your project. Those files will
get copied into your application’s bundle when you build your application. We’ve added
resources like images to our projects, but up to now, we’ve only used those in Interface
Builder. If we want to get to those resources in our code, we usually have to use NSBundle.
We use the main bundle to retrieve the path of the resource in which we’re interested:

 NSString *plistPath = [bundle pathForResource:@"statedictionary"
 ofType:@"plist"];

This will return a string containing the location of the statedictionary.plist file. We can then
use that path to create an NSDictionary object. Once we do that, the entire contents of
that property list will be loaded into the newly created NSDictionary object, which we then
assign to stateZips.

 NSDictionary *dictionary = [[NSDictionary alloc]
 initWithContentsOfFile:plistPath];
 self.stateZips = dictionary;
 [dictionary release];

24594ch07.indd 175 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers176

The dictionary we just loaded uses the names of the states as the keys and contains an
NSArray with all the ZIP codes for that state as the values. To populate the array for the
left-hand component, we get the list of all keys from our dictionary and assign those to the
states array. Before we assign it, though, we sort it alphabetically.

 NSArray *components = [self.stateZips allKeys];
 NSArray *sorted = [components sortedArrayUsingSelector:
 @selector(compare:)];
 self.states = sorted;

Unless we specifically set the selection to another value, pickers start with the first row (row
0) selected. In order to get the zips array that corresponds to the first row in the states
array, we grab the object from the states array that’s at index 0. That will return the name of
the state that will be selected at launch time. We then use that state name to grab the array
of ZIP codes for that state, which we assign to the zips array that will be used to feed data to
the right-hand component.

 NSString *selectedState = [self.states objectAtIndex:0];
 NSArray *array = [stateZips objectForKey:selectedState];
 self.zips = array;

The two datasource methods are practically identical to the last version; we return the
number of rows in the appropriate array. The same is true for the first delegate method
we implemented. The second delegate method is the new one, and it’s where the magic
 happens:

- (void)pickerView:(UIPickerView *)pickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 if (component == kStateComponent) {
 NSString *selectedState = [self.states objectAtIndex:row];
 NSArray *array = [stateZips objectForKey:selectedState];
 self.zips = array;
 [picker selectRow:0 inComponent:kZipComponent animated:YES];
 [picker reloadComponent:kZipComponent];
 }
}

In this method, which is called any time the picker’s selection changes, we look at the com-
ponent and see whether the left-hand component changed. If it did, we grab the array that
corresponds to the new selection and assign it to the zips array. Then we set the right-hand
component back to the first row and tell it to reload itself. By swapping the zips array when-
ever the state changes, the rest of the code remains pretty much the same as it was in the
DoublePicker example.

24594ch07.indd 176 6/23/09 11:29:04 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 177

We’re not quite done yet. Compile and run your application,
and check out the Dependent tab, as illustrated in
Figure 7-19. Do you see anything there you don’t like?

The two components are equal in size. Even though the ZIP
code will never be more than five characters long, it’s been
given equal billing with the state. Since states like Missis-
sippi and Massachusetts won’t fit in half of the picker, this
seems less than ideal. Fortunately, there’s another delegate
method we can implement to indicate how wide each com-
ponent should be. We have about 295 pixels available to
the picker components in portrait orientation, but for every
additional component we add, we lose a little bit of space to
drawing the edges of the new component. You might need
to experiment a little with values to get it to look right. Add
the following method to the delegate section of Dependent-
ComponentPickerViewController.m:

- (CGFloat)pickerView:(UIPickerView *)pickerView
 widthForComponent:(NSInteger)component {
 if (component == kZipComponent)
 return 90;
 return 200;
}

In this method, we return a number that represents how many pixels wide each component
should be, and the picker will do its best to accommodate this. Save, compile, and run, and
the picker on the Dependent tab will look more like the one shown in Figure 7-5.

Well, by this point, you should be pretty darn comfortable with both pickers and tab bar
applications. We have one more thing to show you about pickers, but let’s have a little fun
while doing it. Let’s create a simple slot machine game.

Creating a Simple Game with a Custom Picker
Next up, we’re going to create an actual working slot machine. Well, OK, it won’t dispense
silver dollars, but it does look pretty cool. Take a look back at Figure 7-6 before proceeding so
you know what the view we’re building is going to look like.

Writing the Controller Header File
Add the following code to CustomPickerViewController.h for starters:

Figure 7-19. Do we really want
the two components to be equal
size?

24594ch07.indd 177 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers178

#import <UIKit/UIKit.h>

@interface CustomPickerViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {
 UIPickerView *picker;
 UILabel *winLabel;

 NSArray *column1;
 NSArray *column2;
 NSArray *column3;
 NSArray *column4;
 NSArray *column5;
}
@property(nonatomic, retain) IBOutlet UIPickerView *picker;
@property(nonatomic, retain) IBOutlet UILabel *winLabel;
@property(nonatomic, retain) NSArray *column1;
@property(nonatomic, retain) NSArray *column2;
@property(nonatomic, retain) NSArray *column3;
@property(nonatomic, retain) NSArray *column4;
@property(nonatomic, retain) NSArray *column5;
-(IBAction)spin;
@end

We’re declaring two outlets, one for a picker view and one for a label. The label will be used
to tell users when they’ve won, which happens when they get three of the same symbol in
a row.

We also create five pointers to NSArray objects. We’ll use these to hold the image views con-
taining the images we want the picker to draw. Even though we’re using the same images
in all five columns, we need separate arrays for each one with its own set of image views,
because each view can be drawn in only one place in the picker at a time. We also declare
an action method, this time called spin.

Building the View
Even though the picker in Figure 7-6 looks quite a bit fancier than the other ones we’ve built,
there’s actually very little difference in the way we’ll design our nib. All the extra work is done
in the delegate methods of our controller.

Make sure you’ve saved your new source code, and then double-click CustomPickerView-
Controller.xib to open the file in Interface Builder. Set the Simulated Interface Elements to
simulate a tab bar at the bottom of the view, and then add a label, a picker, and a button.
Give the button a title of Spin. Next, select the label and use the resize handles to increase
the size so that it takes up the width from left margin to right margin, and most of the avail-
able height left between the button and picker. Next, use the Fonts palette (press ⌘T) to
make the label’s text nice and big. You can also assign your label a nice festive color using

24594ch07.indd 178 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 179

the attributes inspector. While you’re there, be sure to set the text alignment to centered.
After getting the text the way you want it, delete the word Label from it, since we don’t want
any text displayed until the first time the user wins.

After that, make all the connections to outlets and actions. You need to connect the file’s
owner’s picker outlet to the picker view, the file’s owner’s winLabel outlet to the label, and
the button’s touch up inside event to the spin action. After that, just make sure to specify
the Delegate and the DataSource for the picker.

Oh, and there’s one additional thing that you need to do. Select the picker, and bring up the
attributes inspector. You need to uncheck the checkbox labeled User Interaction Enabled so
that the user can’t manually change the dial and cheat. Once you’ve done all that, save and
return to Xcode.

CAUTION
Be careful when using the Fonts palette in Interface Builder for designing iPhone interfaces. Interface
Builder will let you assign any font that’s on your Mac to the label, but the iPhone has a very limited
selection of fonts. You should limit your font selections to one of the following font families: American
Typewriter, AppleGothic, Arial, Arial Rounded MT Bold, Arial Unicode MS, Courier, Courier New, DB LCD
Temp, Georgia, Helvetica, Helvetica Neue, Hiragino Kaku Gothic ProN W3, Hiragino Kaku Gothic ProN W6,
Marker Felt, STHeiti J, STHeiti K, STHeiti SC, STHeiti TC, Times New Roman, Trebuchet MS, Verdana, or
 Zapfino.

Adding Image Resources
Once you’re back in Xcode, we need to add the images that we’ll be using in our game.
We’ve included a set of six image files (seven.png, bar.png, crown.png, cherry.png, lemon.png,
and apple.png) for you in the project archive under the 07 Pickers/Custom Picker Images
folder. Add all of those files to the Resources folder of your project. It’s probably a good idea
to copy them into the project folder when prompted to do so.

Implementing the Controller
We’ve got a bunch of new stuff to cover in the implementation of this controller. Add the fol-
lowing code at the beginning of CustomPickerViewController.m file:

#import "CustomPickerViewController.h"

@implementation CustomPickerViewController
@synthesize picker;
@synthesize winLabel;
@synthesize column1;

24594ch07.indd 179 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers180

@synthesize column2;
@synthesize column3;
@synthesize column4;
@synthesize column5;

-(IBAction)spin {
 BOOL win = NO;
 int numInRow = 1;
 int lastVal = -1;
 for (int i = 0; i < 5; i++) {
 int newValue = random() % [self.column1 count];

 if (newValue == lastVal)
 numInRow++;
 else
 numInRow = 1;

 lastVal = newValue;
 [picker selectRow:newValue inComponent:i animated:YES];
 [picker reloadComponent:i];
 if (numInRow >= 3)
 win = YES;
 }

 if (win)
 winLabel.text = @"WIN!";
 else
 winLabel.text = @"";
}

- (void)viewDidLoad {

 UIImage *seven = [UIImage imageNamed:@"seven.png"];
 UIImage *bar = [UIImage imageNamed:@"bar.png"];
 UIImage *crown = [UIImage imageNamed:@"crown.png"];
 UIImage *cherry = [UIImage imageNamed:@"cherry.png"];
 UIImage *lemon = [UIImage imageNamed:@"lemon.png"];
 UIImage *apple = [UIImage imageNamed:@"apple.png"];

 for (int i = 1; i <= 5; i++) {
 UIImageView *sevenView = [[UIImageView alloc] initWithImage:seven];
 UIImageView *barView = [[UIImageView alloc] initWithImage:bar];
 UIImageView *crownView = [[UIImageView alloc] initWithImage:crown];
 UIImageView *cherryView = [[UIImageView alloc]
 initWithImage:cherry];
 UIImageView *lemonView = [[UIImageView alloc] initWithImage:lemon];
 UIImageView *appleView = [[UIImageView alloc] initWithImage:apple];

24594ch07.indd 180 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 181

 NSArray *imageViewArray = [[NSArray alloc] initWithObjects:
 sevenView, barView, crownView, cherryView, lemonView,
 appleView, nil];

 NSString *fieldName =
 [[NSString alloc] initWithFormat:@"column%d", i];
 [self setValue:imageViewArray forKey:fieldName];
 [fieldName release];
 [imageViewArray release];

 [sevenView release];
 [barView release];
 [crownView release];
 [cherryView release];
 [lemonView release];
 [appleView release];
 }

 srandom(time(NULL));
}
...

Next, insert the following new lines into the viewDidUnload and dealloc methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.picker = nil;
 self.winLabel = nil;
 self.column1 = nil;
 self.column2 = nil;
 self.column3 = nil;
 self.column4 = nil;
 self.column5 = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [picker release];
 [winLabel release];
 [column1 release];
 [column2 release];
 [column3 release];
 [column4 release];
 [column5 release];
 [super dealloc];
}
...

24594ch07.indd 181 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers182

Finally, add the following code to the end of the file. When you’re done, we’ll look at each
new thing in turn:

...
#pragma mark -
#pragma mark Picker Data Source Methods
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 5;
}

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 return [self.column1 count];
}
#pragma mark Picker Delegate Methods
- (UIView *)pickerView:(UIPickerView *)pickerView
 viewForRow:(NSInteger)row
 forComponent:(NSInteger)component reusingView:(UIView *)view {
 NSString *arrayName = [[NSString alloc] initWithFormat:@"column%d",
 component+1];
 NSArray *array = [self valueForKey:arrayName];
 [arrayName release];
 return [array objectAtIndex:row];
}
@end

There’s a lot going on there, huh? Let’s take the new stuff method by method.

The spin Method
The spin method method fires when the user touches the Spin button. In it, we first declare
a few variables that will help us keep track of whether the user has won. We’ll use win to
keep track of whether we’ve found three in a row by setting it to YES if we have. We’ll use
numInRow to keep track of how many of the same value we’ve gotten in a row so far, and we
will keep track of the previous component’s value in lastVal so that we have a way to com-
pare the current value to the previous. We initialize lastVal to –1 because we know that
value won’t match any of the real values:

 BOOL win = NO;
 int numInRow = 1;
 int lastVal = -1;

Next, we loop through all five components and set each one to a new, randomly generated
row selection. We get the count from the column1 array to do that, which is a shortcut we
can use because we know that all five columns have the same number of values:

24594ch07.indd 182 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 183

 for (int i = 0; i < 5; i++) {
 int newValue = random() % [self.column1 count];

We compare the new value to the last value and increment numInRow if it matches. If the
value didn’t match, we reset numInRow back to 1. We then assign the new value to lastVal
so we’ll have it to compare the next time through the loop:

 if (newValue == lastVal)
 numInRow++;
 else
 numInRow = 1;
 lastVal = newValue;

After that, we set the corresponding component to the new value, telling it to animate the
change, and we tell the picker to reload that component:

 [picker selectRow:newValue inComponent:i animated:YES];
 [picker reloadComponent:i];

The last thing we do each time through the loop is look to see whether we got three in a row
and set win to YES if we have:

 if (numInRow >= 3)
 win = YES;
 }

Once we’re done with the loop, we set the label to say whether the spin was a win or not:

 if (win)
 winLabel.text = @"Win!";
 else
 winLabel.text = @"";

The viewDidLoad Method
The new version of viewDidLoad is somewhat scary looking, isn’t it? Don’t worry; once we
break it down, it won’t seem quite so much like the monster in the closet. The first thing we
do is load six different images. We do this using a convenience method on the UIImage class
called imageNamed:.

 UIImage *seven = [UIImage imageNamed:@"seven.png"];
 UIImage *bar = [UIImage imageNamed:@"bar.png"];
 UIImage *crown = [UIImage imageNamed:@"crown.png"];
 UIImage *cherry = [UIImage imageNamed:@"cherry.png"];
 UIImage *lemon = [UIImage imageNamed:@"lemon.png"];
 UIImage *apple = [UIImage imageNamed:@"apple.png"];

24594ch07.indd 183 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers184

We’ve warned you in the past about using convenience class methods to initialize objects
because they use the autorelease pool, but we’re making an exception here for two reasons.
First, this code fires once only when the application launches, and second, it’s just so darn
convenient. By using this method, we avoid having to determine the location of each image
on the iPhone and then use that information to load each image. It’s probably saving us a
dozen lines of code or more without adding meaningful memory overhead.

Once we have the six images loaded, we then need to create instances of UIImageView, one
for each image, for each of the five picker components. We do that in a loop:

 for (int i = 1; i <= 5; i++) {
 UIImageView *sevenView = [[UIImageView alloc] initWithImage:seven];
 UIImageView *barView = [[UIImageView alloc] initWithImage:bar];
 UIImageView *crownView = [[UIImageView alloc] initWithImage:crown];
 UIImageView *cherryView = [[UIImageView alloc]
 initWithImage:cherry];
 UIImageView *lemonView = [[UIImageView alloc] initWithImage:lemon];
 UIImageView *appleView = [[UIImageView alloc] initWithImage:apple];

Once we have the image views, we put them into an array. This array is the one that will be
used to provide data to the picker for one of its five components.

 NSArray *imageViewArray = [[NSArray alloc] initWithObjects:
 sevenView, barView, crownView, cherryView, lemonView,
 appleView, nil];

Now, we just need to assign this array to one of our five arrays. To do that, we’re going to cre-
ate a string that matches the name of one of the arrays. The first time through the loop, this
string will be column1, which is the name of the array we’ll use to feed the first component
in the picker. The second time through, it will equal column2, and so on:

 NSString *fieldName = [[NSString alloc]
 initWithFormat:@"column%d", i];

Once we have the name of one of the five arrays, we can assign this array to that property
using a very handy method called setValue:forKey:. This method lets you set a property
based on its name. So, if we call this with a value of “column1”, it is exactly the same as calling
the mutator method setColumn1:.

 [self setValue:imageViewArray forKey:fieldName];

After that, we just do a little memory cleanup:

 [fieldName release];
 [imageViewArray release];

24594ch07.indd 184 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 185

 [sevenView release];
 [barView release];
 [crownView release];
 [cherryView release];
 [lemonView release];
 [appleView release];
 }

The last thing we do in this method is to seed the random number generator. If we don’t do
that, the game will play the same every time you play it, which gets kind of boring.

 srandom(time(NULL));
}

That wasn’t so bad, was it? But, um, what do we do with those five arrays now that we’ve
filled them up with image views? If you scroll down through the code you just typed, you’ll
see that two datasource methods look pretty much the same as before, but if you look down
further into the delegate methods, you’ll see that we’re using a completely different del-
egate method to provide data to the picker. The one that we’ve used up to now returned an
NSString *, but this one returns a UIView *.

Using this method instead, we can supply the picker with anything that can be drawn into
a UIView. Of course, there are limitations on what will work here and look good at the same
time, given the small size of the picker. But this method gives us a lot more freedom in what
we display, though it is a little bit more work.

- (UIView *)pickerView:(UIPickerView *)pickerView
 viewForRow:(NSInteger)row
 forComponent:(NSInteger)component
 reusingView:(UIView *)view {

This method returns one of the image views from one of the five arrays. To do that, we once
again create an NSString with the name of one of the arrays. Because component is zero-
indexed, we add one to it, which gives us a value between column1 and column5 and which
will correspond to the component for which the picker is requesting data.

 NSString *arrayName = [[NSString alloc] initWithFormat:@"column%d",
 component+1];

Once we have the name of the array to use, we retrieve that array using a method called
valueForKey:. valueForKey: is the counterpart to the setValue:forKey: method that we
used in viewDidLoad. Using it is the same as calling the accessor method for the property
you specify. So, calling valueForKey: and specifying “column1” is the same as using the
column1 accessor method. Once we have the right array for the component, we just return
the image view from the array that corresponds to the selected row.

24594ch07.indd 185 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers186

 NSArray *array = [self valueForKey:arrayName];
 return [array objectAtIndex:row];
}

Wow, take a deep breath. You got through all of it in one piece and now you get to take it for
a spin.

Final Details
Our little game is rather fun, especially when you think about how little effort it took to build
it. Let’s make a couple more tweaks to it, though. There are two things about this game right
now that really bug us. The first is that it’s so darn quiet. Slot machines aren’t quiet! The sec-
ond thing is that it tells us that we’ve won before the dials have finished spinning, which is a
minor thing, but it does tend to eliminate the anticipation.

First things first: the 07 Pickers/Custom Picker Sounds folder in the projects archive that
accompanies the book contains two sound files: crunch.wav and win.wav. Add both of these
to your project’s Resources folder. These are the sounds we’ll play, respectively, when the
users tap the spin button and when they win.

To work with sounds, we’ll need access to the iPhone’s Audio Toolbox classes. Insert this line
at the top of CustomPickerViewController.m:

#import <AudioToolbox/AudioToolbox.h>

Next, we need to add an outlet that will point to the button. While the wheels are spinning,
we’re going to hide the button. We don’t want users tapping the button again until the cur-
rent spin is all done. Add the following code to CustomPickerViewController.h:

#import <UIKit/UIKit.h>

@interface CustomPickerViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {
 UIPickerView *picker;
 UILabel *winLabel;

 NSArray *column1;
 NSArray *column2;
 NSArray *column3;
 NSArray *column4;
 NSArray *column5;

 UIButton *button;
}
@property(nonatomic, retain) IBOutlet UIPickerView *picker;
@property(nonatomic, retain) IBOutlet UILabel *winLabel;
@property(nonatomic, retain) NSArray *column1;

24594ch07.indd 186 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 187

@property(nonatomic, retain) NSArray *column2;
@property(nonatomic, retain) NSArray *column3;
@property(nonatomic, retain) NSArray *column4;
@property(nonatomic, retain) NSArray *column5;
@property(nonatomic, retain) IBOutlet UIButton *button;
-(IBAction)spin;

@end

After you type that and save, double-click CustomPickerViewController.xib to open the file in
Interface Builder. Once it’s open, control-drag from File’s Owner to the Spin button, and con-
nect it to the new button outlet we just created. Save, and go back to Xcode.

Now, we need to do a few things in the implementation of our controller class. First, we need
to synthesize the accessor and mutator for our new outlet, so open CustomPickerView
Controller.m and add the following line:

@implementation CustomPickerViewController
@synthesize picker;
@synthesize winLabel;
@synthesize column1;
@synthesize column2;
@synthesize column3;
@synthesize column4;
@synthesize column5;
@synthesize button;
...

We also need a couple of methods added to our controller class. Add the following two
methods to CustomPickerViewController.m as the first two methods in the class:

-(void)showButton {
 button.hidden = NO;
}

-(void)playWinSound {
 NSString *path = [[NSBundle mainBundle] pathForResource:@"win"
 ofType:@"wav"];
 SystemSoundID soundID;
 AudioServicesCreateSystemSoundID((CFURLRef)[NSURL fileURLWithPath:path]
 , &soundID);
 AudioServicesPlaySystemSound (soundID);
 winLabel.text = @"WIN!";
 [self performSelector:@selector(showButton) withObject:nil
 afterDelay:1.5];
}

24594ch07.indd 187 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers188

The first method is used to show the button. We’re going to hide the button when the user
taps it, because if the wheels are already spinning, there’s no point in letting them spin again
until they’ve stopped.

The second method will be called when the user wins. The first line of this method asks the
main bundle for the path to the sound called win.wav, just as we did when we loaded the
property list for the Dependent picker view. Once we have the path to that resource, the
next three lines of code load the sound file in and play it. Then we set the label to WIN! and
call the showButton method, but we call the show button method in a special way using a
method called performSelector:withObject:afterDelay:. This is a very handy method
available to all objects; it lets you call the method sometime in the future, in this case, one
and a half seconds in the future, which will give the dials time to spin to their final locations
before telling the user the result.

We also have to make some changes to the spin: method. We have to write code to play
a sound and to call the playerWon method if the player, in fact, won. Make the following
changes to it now:

-(IBAction)spin {
 BOOL win = NO;
 int numInRow = 1;
 int lastVal = -1;
 for (int i = 0; i < 5; i++) {
 int newValue = random() % [self.column1 count];

 if (newValue == lastVal)
 numInRow++;
 else
 numInRow = 1;

 lastVal = newValue;
 [picker selectRow:newValue inComponent:i animated:YES];
 [picker reloadComponent:i];
 if (numInRow >= 3)
 win = YES;

 }

 button.hidden = YES;
 NSString *path = [[NSBundle mainBundle] pathForResource:@"crunch"
 ofType:@"wav"];
 SystemSoundID soundID;
 AudioServicesCreateSystemSoundID((CFURLRef)[NSURL fileURLWithPath:path]
 , &soundID);
 AudioServicesPlaySystemSound (soundID);

24594ch07.indd 188 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 189

 if (win)
 [self performSelector:@selector(playWinSound)
 withObject:nil
 afterDelay:.5];
 else
 [self performSelector:@selector(showButton)
 withObject:nil
 afterDelay:.5];

 winLabel.text = @"";

}

The first line of code we added hides the Spin! button. The next four lines play a sound to let
the player know they’ve spun the wheels. Then, instead of setting the label to WIN! as soon
as we know the user has won, we do something tricky. We call one of the two methods we
just created, but we do it after a delay using performSelector:afterDelay:. If the user
won, we call our playerWon method half a second into the future, which will give time for
the dials to spin into place; otherwise, we just wait a half a second and reenable the Spin!
button.

The only thing left is to make sure we release our button outlet, so make the following
changes to your dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.picker = nil;
 self.winLabel = nil;
 self.column1 = nil;
 self.column2 = nil;
 self.column3 = nil;
 self.column4 = nil;
 self.column5 = nil;
 self.button = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [picker release];
 [winLabel release];
 [column1 release];
 [column2 release];

24594ch07.indd 189 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers190

 [column3 release];
 [column4 release];
 [column5 release];
 [button release];
 [super dealloc];
}
...

Linking in the Audio Toolbox Framework
If you try to compile now, you’ll get another linking error. Turns out, it’s those functions we
called to load and play sounds. Yeah, they’re not in any of the frameworks that are linked in
by default. A quick command–double-click on the AudioServicesCreateSystemSoundID
function takes us to the header file where it’s declared. If we scroll up to the top of that
header file, we see this:

/*===
 File: AudioToolbox/AudioServices.h

 Contains: API for general high level audio services.

 Copyright: (c) 2006 - 2008 by Apple Inc., all rights reserved.
...

This tells us that the function we’re trying to call is part of the Audio Toolbox, so we have to
manually link our project to that framework.

Right-click (control-click if you have an older single-button mouse) on the Frameworks folder
in the Groups & Files pane in Xcode and select Existing Frameworks. . . from the Add sub-
menu. Navigate to the frameworks folder for the iPhone simulator at:

/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator3.0.sdk/
System/Library/Frameworks

Once you’re there, select AudioToolbox.framework, and add it to your project. When
prompted, select a Reference Type of Relative to Current SDK. By selecting that option, when
you switch between the simulator and iPhone, or between different versions of the iPhone
SDK, it will automatically link to the correct version of the AudioToolbox framework. Now,
your application should compile just fine, and you can play the game with sound and all.

Final Spin
By now, you certainly should be comfortable with tab bar applications and pickers. In this
chapter, you got to build a full-fledged tab bar application from scratch containing five dif-
ferent content views. You learned how to use pickers in a number of different configurations.

24594ch07.indd 190 6/23/09 11:29:05 AM

Download at Boykma.Com

CHAPTER 7: Tab Bars and Pickers 191

You learned how to create pickers with multiple components and even how to make the
values in one component dependent on the value selected in another component. You also
learned how to make the picker display images rather than just text.

Along the way, you also learned about picker delegates and datasources and saw how to
load images, play sounds, create dictionaries from property lists, and link your project to
additional frameworks. It was a long chapter, so congratulations on making it through! When
you’re ready to tackle table views, turn the page, and we’ll keep going.

24594ch07.indd 191 6/23/09 11:29:05 AM

Download at Boykma.Com

24594ch07.indd 192 6/23/09 11:29:05 AM

Download at Boykma.Com

Chapter 8

193

i
Introduction to
Table Views

n our next chapter, we’re going to build a hierarchical navigation-based appli-
cation similar to the Mail application that ships on the iPhone. Our application
will allow the user to drill down into nested lists of data and edit that data. But,
before we can do that, you need to master the concept of table views. And
that’s the goal of this chapter.

Table views are the most common mechanism used to display lists of data
to the user. They are highly configurable objects that can be made to look
practically any way you want them to. Mail uses table views to show lists of
accounts, folders, and messages, but table views are not just limited to the
display of textual data. Table views are also used in the YouTube, Settings,
and iPod applications, even though these applications all have very different
appearances (see Figure 8-1).

Figure 8-1. Though they all look different, the Settings, iPod, and YouTube
applications all use table views to display their data.

24594ch08.indd 193 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views194

Table View Basics
Tables display lists of data. Each item in a table’s list is a row. iPhone tables can have an
unlimited number of rows, constrained only by the amount of available memory. iPhone
tables can be only one column wide.

A table view is the view object that displays a table’s data and is an instance of the class
UITableView. Each visible row of the table is implemented by the class UITableViewCell.
So a table view is the object that displays the visible part of a table, and a table view cell is
responsible for displaying a single row of the table (see Figure 8-2).

Figure 8-2. Each table view is an instance of UITableView, and each visible row is an
 instance of UITableViewCell.

Table views are not responsible for storing your table’s data. They store only enough data
to draw the rows that are currently visible. Table views get their configuration data from
an object that conforms to the UITableViewDelegate protocol and their row data from an
object that conforms to the UITableViewDataSource protocol. You’ll see how all this works
when we get into our sample programs later in the chapter.

As mentioned, all tables are implemented as a single column. But the YouTube application,
shown on the right side of Figure 8-1, does have the appearance of having at least two col-
umns, perhaps even three if you count the icons. But no, each row in the table is represented
by a single UITableViewCell. Each UITableViewCell object can be configured with an
image, some text, and an optional accessory icon, which is a small icon on the right side that
we’ll cover in detail in the next chapter.

24594ch08.indd 194 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 195

You can put even more data in a cell if you need to. There are two basic ways to do
this. One is to add subviews to UITableViewCell; the other is by creating a subclass of
 UITableViewCell. You can lay the table view cell out in any way you like and include any
subviews that you want. So the single column limitation is far less limiting than it probably
sounds at first. If this is confusing, don’t worry; we’ll show you both of these techniques later
in this chapter.

Grouped and Plain Tables
Table views come in two basic styles. One style is called grouped. Each group in a grouped
table is a set of rows embedded in a rounded rectangle, as shown in the leftmost picture in
Figure 8-3. Note that a grouped table can consist of a single group.

The other style is called plain (in a few places, it’s also referred to as indexed when an index
is used). Plain is the default style. Any table that doesn’t feature rounded rectangles is a plain
table view.

If your datasource provides the necessary information, the table view will let the user navi-
gate your list using an index that is displayed down the right-hand side. Figure 8-3 shows a
grouped table, a plain table without an index, and a plain table with an index (an indexed
table).

Figure 8-3. The same table view displayed as a grouped table (left); a plain table without an index,
(middle); and an plain table with an index, also called an indexed table (right)

24594ch08.indd 195 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views196

Each division of your table is known to your datasource as a section. In a grouped table,
each group is a section (see Figure 8-4). In an indexed table, each indexed grouping of data
is a section. For example, in the indexed tables shown in Figure 8-3, all the names beginning
with “A” would be one section, those beginning with “B” another, and so on.

Figure 8-4. Sections and rows in a grouped table are obvious,
but all tables support them.

Sections have two primary purposes. In a grouped table, each section represents one group.
In an indexed table, each section corresponds to one index entry. So, if you wanted to dis-
play a list indexed alphabetically with an index entry for every letter, for example, you would
have 26 sections, each containing all the values that begin with a particular letter.

CAUTION
It is technically possible to create a grouped table with an index. Even though it’s possible, you should not
provide an index for a grouped table view. The iPhone Human Interface Guidelines specifically state that
grouped tables should not provide indexes.

We’ll create both types of tables in this chapter.

24594ch08.indd 196 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 197

Implementing a Simple Table
Let’s look at the simplest possible example of a table view to get a feel for how it works. In
this example, we’re just going to display a list of text values.

Create a new project in Xcode. For this chapter, we’re going back to the view-based applica-
tion template, so select that one, and call your project Simple Table.

Designing the View
Expand the Resources folder and the Classes
folder. This is such a simple application that
we’re not even going to need any outlets or
actions, so double-click Simple_TableView
Controller.xib to open the file in Interface
Builder. The View window should already be
open, so just look in the library for a Table View
(see Figure 8-5) and drag that over to the View
window.

The table view should automatically size
itself to the height and width of the view (see
 Figure 8-6). This is exactly what we want. Table
views are designed to take up the entire width
of the screen and as much of the height as
isn’t taken up by your application’s navigation
bars, tool bars, or tab bars.

After dropping the table view onto the View
window, it should still be selected. If it’s not,
single-click it to select it, and press ⌘2 to
bring up the connections inspector. You’ll
notice that the first two available connections
for the table view are the same as the first two
for the picker view: dataSource and delegate.
Drag from the circle next to each of those
connections over to the File’s Owner icon. By
doing this, we are making our controller class
both the datasource and delegate for this
table. After doing that, save, close, and go
back to Xcode.

Figure 8-5. The Table View in the library

Figure 8-6. The View window after the
table view is placed

24594ch08.indd 197 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views198

Writing the Controller
Next stop is our controller class’s header file. Single-click Simple_TableViewController.h, and
add the following code:

#import <UIKit/UIKit.h>

@interface Simple_TableViewController : UIViewController
 <UITableViewDelegate, UITableViewDataSource>
{
 NSArray *listData;
}
@property (nonatomic, retain) NSArray *listData;
@end

All we’re doing here is conforming our class to the two protocols that are needed for it to act
as the delegate and datasource for the table view and then declaring an array that will hold
the data to be displayed.

Switch over to Simple_TableViewController.m, and add the following code at the beginning of
the file:

#import "Simple_TableViewController.h"

@implementation Simple_TableViewController
@synthesize listData;
- (void)viewDidLoad {
 NSArray *array = [[NSArray alloc] initWithObjects:@"Sleepy", @"Sneezy",
 @"Bashful", @"Happy", @"Doc", @"Grumpy", @"Dopey", @"Thorin",
 @"Dorin", @"Nori", @"Ori", @"Balin", @"Dwalin", @"Fili", @"Kili",
 @"Oin", @"Gloin", @"Bifur", @"Bofur", @"Bombur", nil];
 self.listData = array;
 [array release];
 [super viewDidLoad];
}
...

Next, add the following lines of code to the existing viewDidUnload and dealloc methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.listData = nil;
 [super viewDidUnload];
}

24594ch08.indd 198 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 199

- (void)dealloc {
 [listData release];
 [super dealloc];
}
...

Finally, add the following code at the end of the file:

...
#pragma mark -
#pragma mark Table View Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.listData count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *SimpleTableIdentifier = @"SimpleTableIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 SimpleTableIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:SimpleTableIdentifier] autorelease];
 }

 NSUInteger row = [indexPath row];
 cell.textLabel.text = [listData objectAtIndex:row];
 return cell;
}
@end

We added three methods to the controller. You should be very comfortable with the first
one, viewDidLoad, since we’ve done similar things in the past. We’re simply creating an array
of data to pass to the table. In a real application, this array would likely come from another
source, such as a text file, property list, or URL.

If you scroll down to the end, you can see we added two datasource methods. The first one,
tableView:numberOfRowsInSection:, is used by the table to ask how many rows are in
a particular section. As you might expect, the default number of sections is one, and this
method will be called to get the number of rows in the one section that makes up the list.
We just return the number of items in our array.

24594ch08.indd 199 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views200

The next method probably requires a little explanation, so let’s look at it more closely:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

This method is called by the table view when it needs to draw one of its rows. You’ll notice
that the second argument to this method is an NSIndexPath instance. This is the mechanism
that table views use to wrap the section and row into a single object. To get the row or the
section out of an NSIndexPath, you just call either its row method or its section method,
both of which return an int.

The first parameter, tableView, is a reference to the table doing the asking. This allows us to
create classes that act as a datasource for multiple tables.

Next, we declare a static string instance.

static NSString *SimpleTableIdentifier = @"SimpleTableIdentifier";

This string will be used as a key to represent a single kind of table cell. We’ll be using only
one kind of cell in this table, so we define a single identifier. A table view can display only
a few rows at a time on iPhone’s small screen, but the table itself can conceivably hold
considerably more. Remember that each row in the table is represented by an instance of
UITableViewCell, which is a subclass of UIView, which means each row can contain sub-
views. With a large table, this could represent a huge amount of overhead if the table were
to try and keep one table view cell instance for every row in the table regardless of whether
that row was currently being displayed. Fortunately, tables don’t work that way.

Instead, as table view cells scroll off the screen, they are placed into a queue of cells available
to be reused. If the system runs low on memory, the table view will get rid of the cells in the
queue, but as long as it’s got some available memory for them, it will hold on to them in case
you want to use them again.

Every time a table view cell rolls off the screen, there’s a pretty good chance that another
one just rolled onto the screen on the other side. If that new row can just reuse one of the
cells that has already rolled off the screen, the system can avoid the overhead associated
with constantly creating and releasing those views. To take advantage of this mechanism,
we’ll ask the table view to give us one of its dequeued cells of the type we want. Note that
we’re making use of the NSString identifier we declared earlier. In effect, we’re asking for a
reusable cell of type SimpleTableIdentifier:

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 SimpleTableIdentifier];

24594ch08.indd 200 6/23/09 11:34:32 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 201

Now, it’s completely possible that the table view won’t have any spare cells, so we check
cell after the call to see whether it’s nil. If it is, we manually create a new table view cell
using that identifier string. At some point, we’ll inevitably reuse one of the cells we create
here, so we need to make sure it has the correct type.

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier: SimpleTableIdentifier] autorelease];
 }

We now have a table view cell that we can return for the table view to use. All we need to do
now is place whatever information we want displayed in this cell. Displaying text in a row
of a table is a very common task, so the table view cell provides a UILabel property called
textLabel that we can set in order to display strings. To do that, all we have to do is get the
right string out of our listData array and use it to set the cell’s textLabel.

NOTE
Are you curious about what UITableViewCellStyleDefault does? Hold onto that thought for
just a few minutes, and we’ll show you!

To get the correct value, however, we need to know which row the table view is asking for.
We get that information out of the indexPath variable, like so:

NSUInteger row = [indexPath row];

We use the row number of the table to get the corresponding string from the array, assign it
to the cell’s textLabel.text property, and then return the cell.

 cell.textLabel.text = [listData objectAtIndex:row];
 return cell;
}

That wasn’t so bad, was it? Compile and run your application and you should see the array
values displayed in a table view (see Figure 8-7).

NOTE
Using cell.textLabel.text will work only when working in the iPhone SDK 3.0 and later. In prior
versions, you would use cell.text instead.

24594ch08.indd 201 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views202

Figure 8-7. The Simple Table application,
in all its dwarven glory

Adding an Image
It’d be nice if we could add an image to each row. Guess we’d have to create a subclass of
UITableViewCell or add subviews in order to do that, huh? Actually, no, not if you can
live with the image being on the left-hand side of each row. The default table view cell can
handle that situation just fine. Let’s check it out.

In the 08 Simple Table folder, in the project archive, grab the file called star.png, and add it to
your project’s Resources folder. star.png is a small icon we prepared just for this project.

Next, let’s get to the code. In the file Simple_TableViewController.m, add the following code to
the tableView:cellForRowAtIndexPath: method:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *SimpleTableIdentifier = @" SimpleTableIdentifier ";

24594ch08.indd 202 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 203

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 SimpleTableIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero
 reuseIdentifier: SimpleTableIdentifier] autorelease];
 }

 UIImage *image = [UIImage imageNamed:@"star.png"];
 cell.imageView.image = image;

 NSUInteger row = [indexPath row];
 cell.textLabel.text = [listData objectAtIndex:row];

 return cell;
}
@end

Yep, that’s it. Each cell has an imageView property.
Each imageView has an image property, as well as
a highlightedImage property. The image appears
to the left of the cell’s text and is replaced by the
 highlightedImage, if one is provided, when the cell
is selected.

We just set the cell’s imageView.image property to what-
ever image we want to display. If you compile and run
your application now, you should get a list with a bunch
of nice little star icons to the left of each row (see Figure
8-8). Of course, if we wanted to, we could have included
a different image for each row in the table. Or, with very
little effort, we could have used one icon for all of Mr.
 Disney’s dwarves and a different one for Mr. Tolkein’s.

If you like, make a copy of star.png, colorize it a bit, add it
to the project, load it with imageNamed:, and use it to set
imageView.highlightedImage. Now, if you click a cell,
your new image will be drawn. If you don’t feel like col-
oring, use the star2.png icon we provided in the project
archive.

NOTE
It’s okay to use imageNamed: in this way. UIImage uses a caching mechanism based on the filename, so
it won’t load a new image property each time, but instead will use the already cached version.

Figure 8-8. We used the cell’s
image property to add an image to
each of the table view’s cells.

24594ch08.indd 203 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views204

Table View Cell Styles
Versions of the iPhone SDK prior to SDK 3.0 were limited to a single cell style, the one shown
in Figure 8-8. With the release of SDK 3.0, Apple added a bit more variety to the standard
table cell design.

For starters, Apple introduced the concept of a cell style. Cell styles make use of three differ-
ent cell elements:

Image: If an image is part of the specified style, the image is displayed to the left of
the cell’s text.

Text Label: This is the cell’s primary text. In the style we used earlier,
 UITableViewCellStyleDefault, the text label is the only text shown in the cell.

Detail Text Label: This is the cell’s secondary text, usually used as an explanatory
note or label. We’ll show an example of a style that uses detail text in a moment.

To see what these new style additions look like, add the following code to tableView:cellF
orRowAtIndexPath: in Simple_TableViewController.m:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *SimpleTableIdentifier = @"SimpleTableIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 SimpleTableIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier: SimpleTableIdentifier] autorelease];
 }

 UIImage *image = [UIImage imageNamed:@"star.png"];
 cell.image = image;

 NSUInteger row = [indexPath row];
 cell.textLabel.text = [listData objectAtIndex:row];

 if (row < 7)
 cell.detailTextLabel.text = @"Mr. Disney";
 else
 cell.detailTextLabel.text = @"Mr. Tolkein";

 return cell;
}

24594ch08.indd 204 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 205

All we’ve done here is set the cell’s detail text. We
use the string @"Mr. Disney" for the first seven
rows and @"Mr. Tolkein" for the rest. When
you run this code, each cell will look like just
the same as it did before (see Figure 8-9). That’s
because we are using the style UITableViewCell-
StyleDefault, which does not make use of the
detail text.

Now, change UITableViewCellStyleDefault to
UITableViewCellStyleSubtitle and run again.
With the subtitle style, both text elements are
shown, one below the other (Figure 8-10).

Change UITableViewCellStyleSubtitle to
UITableViewCellStyleValue1 and then build
and run. This style doesn’t use the cell’s image, but
places the text label and detail text label on the
same line on opposite sides of the cell (Figure 8-11).

One last time, let’s change UITableViewCellStyl-
eValue1 to UITableViewCellStyleValue2. This
format is often used to display information along
with a descriptive label. It also doesn’t show the
cell’s icon, but places the detail text label to the left of the text label. In this layout, the detail
text label acts as a label describing the type of data held in the text label.

Now that you’ve seen the cell styles that are available, go ahead and change back to using
UITableViewCellStyleDefault before continuing on. Later, you’ll see how to customize
the appearance of your table. But before decide to do that, make sure you consider the avail-
able styles to see whether one of them will suit your needs.

Additional Configurations
You may have noticed that we made our controller both the datasource and delegate for
this table view, but up to now, we haven’t actually implemented any of the methods from
UITableViewDelegate. Unlike picker views, simpler table views don’t require a delegate to
do their thing. The datasource provides all the data needed to draw the table. The purpose
of the delegate is to configure the appearance of the table view and to handle certain user
interactions. Let’s take a look at a few of the configuration options now. We’ll look at more in
the next chapter.

Figure 8-9. The default cell style shows
the image and text label in a straight row.

Figure 8-10. The subtitle style shows the
detail text in smaller, gray letters below
the text label.

Figure 8-11. The Style Value 1 will place
the text label on the left side in black let-
ters, the detail text right-justified on the
right side in blue letters, but doesn’t show
the cell’s image.

Figure 8-12. The Style Value 2 places the
detail text label in blue letters to the left
of the text label.

24594ch08.indd 205 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views206

Setting the Indent Level
The delegate can be used to specify that some rows should be indented. In the file
Simple_TableViewController.m, add the following method to your code, just above the
@end declaration:

#pragma mark -
#pragma mark Table Delegate Methods

- (NSInteger)tableView:(UITableView *)tableView
 indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger row = [indexPath row];
 return row;

}

This method sets the indent level for each row to its
row number, so row 0 will have an indent level of 0, row
1 will have an indent level of 1, and so on. An indent
level is simply an integer that tells the table view to
move that row a little to the right. The higher the num-
ber, the further to the right the row will be indented.
You might use this technique, for example, to indicate
that one row is subordinate to another row, as Mail
does when representing subfolders.

When we run the application again, you can see that
each row is now drawn a little further to the right than
the last one (see Figure 8-13).

Handling Row Selection
The table’s delegate can use two methods to determine
if the user has selected a particular row. One method
gets called before the row gets selected and can be
used to prevent the row from being selected or can
even change which row gets selected. Let’s imple-
ment that method and specify that the first row is not
selectable. Add the following method to the end of
Simple_TableViewController.m, just before the @end
declaration:

-(NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger row = [indexPath row];

Figure 8-13. Each row of the table
is drawn with an indent level higher
than the row before it.

24594ch08.indd 206 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 207

 if (row == 0)
 return nil;

 return indexPath;
}

This method gets passed indexPath, which represents the item that’s about to get selected.
Our code looks at which row is about to be selected. If the row is the first row, which is
always index zero, then it returns nil, which indicates that no row should actually be
selected. Otherwise, it returns indexPath, which is how we indicate that it’s OK for the selec-
tion to proceed.

Before you compile and run, let’s also implement the delegate method that gets called after
a row has been selected, which is typically where you’ll actually handle the selection. This
is where you take whatever action is appropriate when the user selects a row. In the next
chapter, we’ll use this method to handle the drill-downs, but in this chapter, we’ll just throw
up an alert to show that the row was selected. Add the following method to the bottom of
Simple_TableViewController.m, just before the @end declaration again.

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger row = [indexPath row];
 NSString *rowValue = [listData objectAtIndex:row];

 NSString *message = [[NSString alloc] initWithFormat:
 @"You selected %@", rowValue];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Row Selected!"
 message:message
 delegate:nil
 cancelButtonTitle:@"Yes I Did"
 otherButtonTitles:nil];
 [alert show];

 [message release];
 [alert release];
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

Once you’ve added this method, compile and run and take it for a spin. See whether you
can select the first row (you shouldn’t be able to), and then select one of the other rows. The
selected row should highlight, and then your alert should pop up telling you which row you
selected while the selected row fades in the background (see Figure 8-14).

24594ch08.indd 207 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views208

Note that you can also modify the index path before you pass it back, which would cause a
different row and/or section to be selected. You won’t do that very often, as you should have
a very good reason for changing the user’s selection on them. In the vast majority of cases,
when you use this method, you will either return indexPath unmodified to allow the selec-
tion, or else nil to or disallow it.

Figure 8-14. In this example, the first row is not selectable,
and an alert is displayed when any other row is selected.
This was done using the delegate methods.

Changing Font Size and Row Height
Let’s say that we want to change the size of the font being used in the table view. In most
situations, you shouldn’t override the default font; it’s what users expect to see. But there are
valid reasons to do this at times. Add the following line of code to your tableView:cellFor
RowAtIndexPath: method and then compile and run:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

24594ch08.indd 208 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 209

 static NSString *SimpleTableIdentifier = @"SimpleTableIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 SimpleTableIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier: SimpleTableIdentifier] autorelease];

 }

 UIImage *image = [UIImage imageNamed:@"star.png"];
 cell.image = image;

 NSUInteger row = [indexPath row];
 cell.textLabel.text = [listData objectAtIndex:row];
 cell.textLabel.font = [UIFont boldSystemFontOfSize:50];

 if (row < 7)
 cell.detailTextLabel.text = @"Mr. Disney";
 else
 cell.detailTextLabel.text = @"Mr. Tolkein";

 return cell;
}

When you run the application now, the values in your list get drawn really large, but they
don’t exactly fit in the row (see Figure 8-15).

Well, here comes the table view delegate to the rescue! The table view delegate can specify
the height of the table rows. In fact, it can specify unique values for each row if you need to.
Go ahead and add this method to your controller class, just before @end:

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return 70;
}

We’ve just told the table view to set the row height for all rows to 70 pixels tall. Compile and
run, and your table’s rows should be much taller now (see Figure 8-16).

24594ch08.indd 209 6/23/09 11:34:33 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views210

Figure 8-15. Look how nice and big! Figure 8-16. Changing the row size
But, um, it would be nice if we could using the delegate
see everything.

What Else Can the Delegate Do?
There are more tasks that the delegate handles, but most of the remaining ones come into
play when we start working with hierarchical data in the next chapter. To learn more, use the
documentation browser to explore the UITableViewDelegate protocol and see what other
methods are available.

Customizing Table View Cells
You can do a lot with table views right out of the box, but often, you will want to format
the data for each row in ways that simply aren’t supported by UITableViewCell directly.
In those cases, there are two basic approaches, one that involves adding subviews to
UITableViewCell and a second that involves creating a subclass of UITableViewCell.
Let’s look at both techniques.

24594ch08.indd 210 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 211

The Cells Application
To show how to use custom cells, we’re going to create
a new application with another table view. In each row,
we’ll display two lines of information along with two
labels (see Figure 8-17). Our application will display the
name and color of a series of potentially familiar com-
puter models, and we’ll display both of those pieces of
information in the same table cell by adding subviews
to the table view cell.

Adding Subviews to the Table View Cell
Although the four provided table view cell styles offer
a fair amount of flexibility, there will still be situations
where you need more flexibility than those built-in
styles allow. We’re going to create a project that adds
subviews to the table view cell in order to work around
that limitation, enabling us to display two lines of data
in each cell.

Create a new Xcode project using the view-based appli-
cation template. Name the project Cells. Double-click
CellsViewController.xib to open the nib file in Interface
Builder. Add a Table View to the main view, and set its
delegate and datasource to File’s Owner as we did in the
previous section. Save the nib, and come back to Xcode. You can refer to the “Building the
View” section earlier in the chapter for the exact steps if you need to.

Modifying the Controller Header File
Single-click CellsViewController.h, and add the following code:

#import <UIKit/UIKit.h>
#define kNameValueTag 1
#define kColorValueTag 2

@interface CellsViewController : UIViewController
 <UITableViewDataSource, UITableViewDelegate>
{
 NSArray *computers;
}
@property (nonatomic, retain) NSArray *computers;
@end

Figure 8-17. Adding subviews to the
table view cell can give you multiline
rows.

24594ch08.indd 211 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views212

The first thing that you’ll notice here is that we have defined two constants. We’re going to
use these in a few moments to assign tags to some of the subviews that we’ll be adding to
the table view cell. We’re going to add four subviews to the cell, and two of those need to
be changed for every row. In order to do that, we need some mechanism that will allow us
to retrieve the two fields from the cell when we go to update that cell with a particular row’s
data. If we set unique tag values for each label that we’ll need to use again, we’ll be able to
retrieve them from the table view cell and set their value.

Implementing the Controller’s Code
In our controller, we need to set up some data to use, and then implement the table data-
source methods to feed that data to the table. Single-click CellsViewController.m, and add the
following code at the beginning of the file:

#import "CellsViewController.h"

@implementation CellsViewController
@synthesize computers;
- (void)viewDidLoad {

 NSDictionary *row1 = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"MacBook", @"Name", @"White", @"Color", nil];
 NSDictionary *row2 = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"MacBook Pro", @"Name", @"Silver", @"Color", nil];
 NSDictionary *row3 = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"iMac", @"Name", @"White", @"Color", nil];
 NSDictionary *row4 = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"Mac Mini", @"Name", @"White", @"Color", nil];
 NSDictionary *row5 = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"Mac Pro", @"Name", @"Silver", @"Color", nil];

 NSArray *array = [[NSArray alloc] initWithObjects:row1, row2,
 row3, row4, row5, nil];
 self.computers = array;

 [row1 release];
 [row2 release];
 [row3 release];
 [row4 release];
 [row5 release];
 [array release];
}
...

Of course, we need to be good memory citizens, so make the following changes to the exist-
ing dealloc and viewDidUnload methods:

24594ch08.indd 212 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 213

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.computers = nil;
}
- (void)dealloc {
 [computers release];
 [super dealloc];
}
...

and add this code at the end of the file, above the @end declaration:

...
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.computers count];
}
-(UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellTableIdentifier = @"CellTableIdentifier ";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 CellTableIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellTableIdentifier] autorelease];

 CGRect nameLabelRect = CGRectMake(0, 5, 70, 15);
 UILabel *nameLabel = [[UILabel alloc] initWithFrame:nameLabelRect];
 nameLabel.textAlignment = UITextAlignmentRight;
 nameLabel.text = @"Name:";
 nameLabel.font = [UIFont boldSystemFontOfSize:12];
 [cell.contentView addSubview: nameLabel];
 [nameLabel release];

 CGRect colorLabelRect = CGRectMake(0, 26, 70, 15);
 UILabel *colorLabel = [[UILabel alloc] initWithFrame:
 colorLabelRect];
 colorLabel.textAlignment = UITextAlignmentRight;
 colorLabel.text = @"Color:";
 colorLabel.font = [UIFont boldSystemFontOfSize:12];
 [cell.contentView addSubview: colorLabel];
 [colorLabel release];

24594ch08.indd 213 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views214

 CGRect nameValueRect = CGRectMake(80, 5, 200, 15);
 UILabel *nameValue = [[UILabel alloc] initWithFrame:
 nameValueRect];
 nameValue.tag = kNameValueTag;
 [cell.contentView addSubview:nameValue];
 [nameValue release];

 CGRect colorValueRect = CGRectMake(80, 25, 200, 15);
 UILabel *colorValue = [[UILabel alloc] initWithFrame:
 colorValueRect];
 colorValue.tag = kColorValueTag;
 [cell.contentView addSubview:colorValue];
 [colorValue release];

 }

 NSUInteger row = [indexPath row];
 NSDictionary *rowData = [self.computers objectAtIndex:row];
 UILabel *name = (UILabel *)[cell.contentView viewWithTag:
 kNameValueTag];
 name.text = [rowData objectForKey:@"Name"];

 UILabel *color = (UILabel *)[cell.contentView viewWithTag:
 kColorValueTag];
 color.text = [rowData objectForKey:@"Color"];
 return cell;
}
@end

The viewDidLoad method this time creates a bunch of dictionaries. Each dictionary contains
the name and color information for one row in the table. The name for that row is held in the
dictionary under the key Name, and the color is held under the key Color. We stick all the dic-
tionaries into a single array, which is our data for this table.

Let’s focus on tableView:cellForRowWithIndexPath:, since that’s where we’re really
getting into some new stuff. The first two lines of code are just like our earlier versions. We
create an identifier and ask the table to dequeue a table view cell if it has one.

If the table doesn’t have any cells available for reuse, we have to create a new cell. When we
do this, we also need to create and add the subviews that we’ll be using to implement our
two-line-per-row table. Let’s look at that code a little more closely. First, we create a cell. This
is, essentially, the same technique as before. We specify the default style, although the style
actually won’t matter, because we’ll be adding our own subviews to display our data rather
than using the provided ones.

24594ch08.indd 214 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 215

 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellTableIdentifier] autorelease];

After that, we create four UILabels and add them to the table view cell. The table view cell
already has a UIView subview called contentView, which it uses to group all of its subviews,
much the way we grouped those two switches inside of a UIView back in Chapter 4. As a
result, we don’t add the labels as subviews directly to the table view cell, but rather to its
contentView.

 [cell.contentView addSubview:colorValue];

Two of these labels contain static text. The label nameLabel contains the text Name: and the
label colorLabel contains the text Color:. Those are just static labels that we won’t change.
The other two labels, however, will be used to display our row-specific data. Remember, we
need some way of retrieving these fields later on, so we assign values to both of them. For
example, we assign the constant kNameValueTag into nameValue’s tag field:

 nameValue.tag = kNameValueTag;

In a moment, we’ll use that tag to retrieve the correct label from the cell.

Once we’re done creating our new cell, we use the indexPath argument that was passed in
to determine which row the table is requesting a cell for and then use that row value to grab
the correct dictionary for the requested row. Remember that that dictionary has two key/
value pairs, one with name and another with color.

NSUInteger row = [indexPath row];
NSDictionary *rowData = [self.computers objectAtIndex:row];

Remember those tags we set before? Well, here, we use them to retrieve the label whose
value we need to set.

UILabel *name = (UILabel *)[cell.contentView viewWithTag:kNameValueTag];

Once we have that label, we just set its text to one of the values we pull from the dictionary
that represents this row.

name.text = [rowData objectForKey:@"Name"];

Compile and run your application, and you should get rows with two lines of data in it, just
as in Figure 8-17. Being able to add views to the table view provides a lot more flexibility
than using the standard table view cell alone, but it can get a little tedious creating, position-
ing, and adding all the subviews programmatically. Gosh, it sure would be nice if we could
design the table view cell in Interface Builder, wouldn’t it?

24594ch08.indd 215 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views216

Using a Custom Subclass of UITableViewCell
Well, we’re in luck. It just so happens that you can use Interface Builder to design your table
cell views. We’re going to re-create that same two-line interface we just built in code using
Interface Builder. To do this, we’ll create a subclass of UITableViewCell and a new nib file
that will contain the table view cell. Then, when we need a table view cell to represent a row,
instead of adding subviews to a standard table view cell, we’ll just load in our subclass from
the nib file and use two outlets we’ll add to set the name and color. Make sense? Let’s do it.

Right-click (or control-click) on the Classes folder in Xcode and select New File. . . from
the Add submenu that comes up, or just press ⌘N. When the new file assistant comes up,
select Cocoa Touch Class from the left pane, select Objective-C class in the upper-right pane,
and then select UITableViewCell subclass from the pop-up in the lower-right pane. Click
the Next button; give the new file a name of CustomCell.m; and make sure that Also create
“CustomCell.h” is checked.

Once that file is created, right-click the Resources folder in Xcode, and select Add New
File. . . again. This time, in the left pane of the new file assistant, click User Interface, and from
the upper right pane, select Empty XIB. When prompted for a name, type CustomCell.xib.

Creating the UITableViewCell Subclass
Now that we have all the new files we need, let’s go ahead and create our new subclass of
UITableViewCell.

We’re going to use outlets in our subclass to make it easier to set the value that needs to
change for each row. We could use tags again and avoid creating a subclass altogether, but
by doing it this way, our code will be much more concise and easy to read, because we’ll be
able to set the labels on each row’s cell just by setting properties, like so:

cell.nameLabel = @"Foo";

Single-click CustomCell.h, and add the following code:

#import <UIKit/UIKit.h>

@interface CustomCell : UITableViewCell {
 UILabel *nameLabel;
 UILabel *colorLabel;
}
@property (nonatomic, retain) IBOutlet UILabel *nameLabel;
@property (nonatomic, retain) IBOutlet UILabel *colorLabel;
@end

That’s all we need to do here, so let’s switch over to CustomCell.m and add two more lines:

24594ch08.indd 216 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 217

#import "CustomCell.h"

@implementation CustomCell
@synthesize nameLabel;
@synthesize colorLabel;
- (id)initWithFrame:(CGRect)frame
 reuseIdentifier:(NSString *)reuseIdentifier {
 if (self = [super initWithFrame:frame
 reuseIdentifier:reuseIdentifier]) {
 // Initialization code
 }
 return self;
}

- (void)setSelected:(BOOL)selected animated:(BOOL)animated {

 [super setSelected:selected animated:animated];

 // Configure the view for the selected state
}

- (void)dealloc {
 [nameLabel release];
 [colorLabel release];
 [super dealloc];
}

@end

Make sure you save both of those, and we’re done with our custom subclass.

Designing the Table View Cell in
Interface Builder
Next, double-click CustomCell.xib to open the file in
Interface Builder. There are only two icons in this nib’s
main window: File’s Owner and First Responder. Look in
the library for a Table View Cell (see Figure 8-18), and
drag one of those over to your nib’s main window.

Make sure the table view cell is selected, and press ⌘4
to bring up the identity inspector. Change the class
from UITableViewCell to CustomCell. Figure 8-18. Table View Cell in the

library

24594ch08.indd 217 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views218

After that, press ⌘3 to bring up the size inspector, and
change the table view cell’s height from 44 to 65. That
will give us a little bit more room to play with.

Finally, press ⌘1 to go to the attributes inspector (Fig-
ure 8-19). The first field you’ll see there is Identifier, and
that’s the reuse identifier that we’ve been using in our
code. If this does not ring a bell, scan back through the
chapter and look for SimpleTableIdentifier. Set the
Identifier to CustomCellIdentifier.

Remember, even though UITableViewCell is a sub-
class of UIView, it uses a content view to hold and
group its subviews. Double-click the Custom Cell icon,
which will open a new window. You’ll notice a gray
dashed rounded rectangle labeled Content View (see
Figure 8-20). That’s Interface Builder’s way of telling you
that you should add something, so look in the library
for a View, and drag that onto the Custom Cell window.

When you release the view, it will be the wrong size for
our window. Let’s fix this. With the new view selected,
go to the size inspector. Change View’s size and position
to match the Custom Cell by setting x to 0, y to 0, w to
320, and h to 65.

Now we’re all set. We have a canvas we can use to
design our table view cell in Interface Builder. Let’s
do this.

Drag four labels over from the library to the Custom
Cell window, and place and rename them as shown in
Figure 8-21. To make the Name: and Color: fields bold,
select them, and press ⌘B. Next, select the upper
right label, and make it wider. Drag its right edge all
the way to the right blue line. Do the same for the
lower right label. We want to make sure we have
plenty of room for the name and color data.

Now, control-drag from the Custom Cell icon to the
top-right label on the view, assigning it to the outlet
nameLabel. Then, control-drag again from the Cus-
tom Cell icon to the lower right label, assigning it to
the colorLabel outlet.

Figure 8-19. The attribute inspector
for a table view cell

Figure 8-20. The table view cell’s window

Figure 8-21. The table view cell’s design

24594ch08.indd 218 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 219

NOTE
Although the blue margins are useful in this context for positioning labels against the left and the right,
because the cells will be drawn with a separator against it, the top and bottom guides cannot be relied on
here. We ended up putting the top labels a little higher than the guides suggested, and the bottom labels
a little lower to get everything to look right when the program is run.

You might be wondering why we’re not doing anything with the File’s Owner icon. The
reason is that we just don’t need to. We’re using this table cell to display data, but all the
interaction with the user is going to go through the table view, so it doesn’t need its own
controller class. We’re really just using the nib as a sort of template so we can design our
table cells visually.

Save the nib; close it; and let’s go back to Xcode.

Using the New Table View Cell
To use the cell we designed, we have to make some pretty drastic changes to the
tableView:cellForRowAtIndexPath: method in CellsViewController.m. Delete the one
you currently have, and replace it with this new version:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CustomCellIdentifier = @"CustomCellIdentifier ";

 CustomCell *cell = (CustomCell *)[tableView
 dequeueReusableCellWithIdentifier: CustomCellIdentifier];
 if (cell == nil) {
 NSArray *nib = [[NSBundle mainBundle] loadNibNamed:@"CustomCell"
 owner:self options:nil];
 for (id oneObject in nib)
 if ([oneObject isKindOfClass:[CustomCell class]])
 cell = (CustomCell *)oneObject;
 }
 NSUInteger row = [indexPath row];
 NSDictionary *rowData = [self.computers objectAtIndex:row];
 cell.colorLabel.text = [rowData objectForKey:@"Color"];
 cell.nameLabel.text = [rowData objectForKey:@"Name"];
 return cell;
}

While you’re mucking around in CellsViewController.m, go ahead and add this line near the
top:

#import "CustomCell.h"

24594ch08.indd 219 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views220

Because we’ve designed the table view cell in a nib file, if there are no reusable cells, we sim-
ply load one from the nib. When we load the nib, we get an array that contains all the objects
in the nib. The objects and order of those objects is undocumented and has changed in the
past, so rather than rely on the table view cell being at a specific index in the nib, we’ll loop
through all the objects in the nib and look for an instance of our CustomCell class.

There’s one other addition we have to make. Because we change the height of our table
view cell from the default value, we have to inform the table view of that fact; otherwise, it
won’t leave enough space for the cell to display properly. We do that by adding this delegate
method to CellsViewController.m, just before the @end:

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return kTableViewRowHeight;
}

Unfortunately, we can’t get this value from the cell because this delegate method may be
called before the cell exists, so we have to hard-code the value. Add this constant definition
to the top of CellsViewController.h, and delete the tag constants, which are no longer needed.

#define kTableViewRowHeight 66
#define kNameValueTag 1
#define kColorValueTag 2

That’s it. Build and run. Now your two line table cells are based on your mad Interface Builder
design skillz.

Grouped and Indexed Sections
Our next project will explore another fundamental aspect of tables. We’re still going to use a
single table view—no hierarchies yet—but we’re going to divide data into sections. Create
a new Xcode project using the view-based application template again, this time calling it
Sections.

Building the View
Open the Classes and Resources folders, and double-click SectionsViewController.xib to open
the file in Interface Builder. Drop a table view onto the View window, as we did before. Then
press ⌘2, and connect the dataSource and delegate connections to the File’s Owner icon.

Next, make sure the table view is selected, and press ⌘1 to bring up the attributes inspector.
Change the table view’s Style from Plain to Grouped (see Figure 8-22). If you need a reminder,
we discussed the difference between indexed and grouped styles at the beginning of the
chapter. Save and return to Xcode.

24594ch08.indd 220 6/23/09 11:34:34 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 221

Figure 8-22. The attributes inspector for the table view

Importing the Data
This project needs a fair amount of data to do its thing. To save you a few hours worth of
typing, we’ve provided another property list for your tabling pleasure. Grab the file named
sortednames.plist from the 08 Sections folder in the projects archive that came with this book,
and add it to your project’s Resources folder.

Once it’s added to your project, single-click sortednames.plist just to get a sense of what it
looks like (see Figure 8-23). It’s a property list that contains a dictionary, with one entry for
each letter of the alphabet. Underneath each letter is a list of names that start with that
 letter.

24594ch08.indd 221 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views222

Figure 8-23. The sortednames.plist property list file

We’ll use the data from this property list to feed the table view, creating a section for each
letter.

Implementing the Controller
Single-click the SectionsViewController.h file, and add both an NSDictionary and an
 NSArray instance variable and corresponding property declarations. The dictionary will hold
all of our data. The array will hold the sections sorted in alphabetical order. We also need to
conform the class to the UITableViewDataSource and UITableViewDelegate protocols:

#import <UIKit/UIKit.h>

@interface SectionsViewController : UIViewController
 <UITableViewDataSource, UITableViewDelegate>
{
 NSDictionary *names;
 NSArray *keys;
}

24594ch08.indd 222 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 223

@property (nonatomic, retain) NSDictionary *names;
@property (nonatomic, retain) NSArray *keys;
@end

Now, switch over to SectionsViewController.m, and add the following code to the beginning
of that file:

#import "SectionsViewController.h"

@implementation SectionsViewController
@synthesize names;
@synthesize keys;
- (void)viewDidLoad {
 NSString *path = [[NSBundle mainBundle] pathForResource:@"sortednames"
 ofType:@"plist"];
 NSDictionary *dict = [[NSDictionary alloc]
 initWithContentsOfFile:path];
 self.names = dict;
 [dict release];

 NSArray *array = [[names allKeys] sortedArrayUsingSelector:
 @selector(compare:)];
 self.keys = array;
}
...

Insert the following lines of code in the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.names = nil;
 self.keys = nil;
}
- (void)dealloc {
 [names release];
 [keys release];
 [super dealloc];
}
...

And add the following code at the end of the file, just above the @end declaration:

...
#pragma mark -
#pragma mark Table View Data Source Methods
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

24594ch08.indd 223 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views224

 return [keys count];
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 NSString *key = [keys objectAtIndex:section];
 NSArray *nameSection = [names objectForKey:key];
 return [nameSection count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger section = [indexPath section];
 NSUInteger row = [indexPath row];

 NSString *key = [keys objectAtIndex:section];
 NSArray *nameSection = [names objectForKey:key];

 static NSString *SectionsTableIdentifier = @"SectionsTableIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 SectionsTableIdentifier;
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:SectionsTableIdentifier] autorelease];
 }

 cell.textLabel.text = [nameSection objectAtIndex:row];
 return cell;

}
- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 NSString *key = [keys objectAtIndex:section];
 return key;
}
@end

Most of this isn’t too different from what you’ve seen before. In the viewDidLoad method,
we created an NSDictionary instance from the property list we added to our project and
assigned it to names. After that, we grabbed all the keys from that dictionary and sorted
them to give us an ordered NSArray with all the key values in the dictionary in alphabetical
order. Remember, the NSDictionary uses the letters of the alphabet as its keys, so this array
will have 26 letters, in order from “A” to “Z,” and we’ll use that array to help us keep track of
the sections.

24594ch08.indd 224 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 225

Scroll down to the datasource methods. The first one we added to our class specifies the
number of sections. We didn’t implement this method last time because we were happy
with the default setting of 1. This time, we’re telling the table view that we have one section
for each key in our dictionary.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [keys count];
}

The next method calculates the number of rows in a specific section. Last time, we had only
one section, so we just returned the number of rows we had in our array. This time, we have
to break it down per section. We can do that by retrieving the array that corresponds to the
section in question and returning the count from that array.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 NSString *key = [keys objectAtIndex:section];
 NSArray *nameSection = [names objectForKey:key];
 return [nameSection count];
}

In our tableView:cellForRowAtIndexPath: method, we have to extract both the section
and row from the index path and use that to determine which value to use. The section will
tell us which array to pull out of the names dictionary, and then we can use the row to figure
out which value from that array to use. Everything else in that method is basically the same
as the version in the Simple Table application.

The method tableView:titleForHeaderInSection allows you to specify an optional
header value for each section, and we simply return the letter for this group.

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 NSString *key = [keys objectAtIndex:section];
 return key;
}

Why don’t you compile and run the project and revel in its grooviness? Remember that we
changed the table’s Style to Grouped, so we ended up with a grouped table with 26 sections,
which should look like Figure 8-24.

As a contrast, let’s change our table view back to the indexed style and see what an indexed
table view with multiple sections looks like. Double-click SectionViewController.xib to open
the file in Interface Builder. Select the table view, and use the attributes inspector to change
the view back to Plain. Save, and go back to Xcode to build and run it—same data, different
grooviness (see Figure 8-25).

24594ch08.indd 225 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views226

Figure 8-24. A grouped table with Figure 8-25. An indexed table view
multiple sections with sections

Adding an Index
One problem with our current table is the sheer number of rows. There are two thousand
names in this list. Your finger will get awfully tired looking for Zachariah or Zebediah, not to
mention Zojirishu.

One solution to this problem is to add an index down the right side of the table view. Now
that we’ve set our table view style back to indexed, that’s actually relatively easy to do. Add
the following method to the bottom of SectionsViewController.m, just above the @end:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return keys;
}

Yep, that’s it. In this method, the delegate is asking for an array of the values to display in
the index. You must have more than one section in your table view to use the index, and the
entries in this array must correspond to those sections. The returned array must have the
same number of entries as you have sections, and the values must correspond to the appro-
priate section. In other words, the first item in this array will take the user to the first section,
which is section 0.

24594ch08.indd 226 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 227

Compile and run again, and you’ll have yourself a nice index
(see Figure 8-26).

Implementing a Search Bar
The index is helpful, but even so, we still have an awful lot of
names here. If we want to see whether the name Arabella is
in the list, for example, we’re still going to have to scroll for
a while even after using the index. It’d be nice if we could
let the user pare down the list by specifying a search term,
wouldn’t it? That’d be darn user friendly. Well, it’s a little bit
of extra work, but it’s not too bad. We’re going to implement
a standard iPhone search bar, like the one shown in
Figure 8-27.

Rethinking the Design
Before we set about doing this, we need to put some
thought into how it’s going to work. Currently, we have a
dictionary that holds a bunch of arrays, one for each letter
of the alphabet. The dictionary is immutable, which means
we can’t add or delete values from it, and so are the arrays
that it holds. We also have to retain the ability to get back to
the original dataset when the user hits cancel or erases their
search term.

What we can do is to create two dictionaries: an immutable
dictionary to hold the full dataset and a mutable copy that
we can remove rows from. The delegate and datasources
will read from the mutable dictionary, and when the search
criteria change or the search is cancelled, we can refresh the
mutable dictionary from the immutable one. Sounds like a
plan. Let’s do it.

CAUTION
This next project is a bit advanced and may cause a distinct burn-
ing sensation if taken too quickly. If some of these concepts give
you a headache, retrieve your copy of Learn Objective-C (Mark
Dalrymple and Scott Knaster, Apress 2009) and review the bits
about categories and mutability.

Figure 8-26. The indexed table
view with an index

Figure 8-27. The application
with a search bar added to it

24594ch08.indd 227 6/23/09 11:34:35 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views228

A Deep Mutable Copy
There’s one problem. NSDictionary conforms to the NSMutableCopying protocol,
which returns an NSMutableDictionary, but that method creates what’s called a “shal-
low” copy. This means that when you call the mutableCopy method, it will create a new
 NSMutableDictionary object that has all the objects that the original dictionary had. They
won’t be copies; they will be the same actual objects. This would be fine if, say, we were
dealing with a dictionary storing strings, because removing a value from the copy wouldn’t
do anything to the original. Since we have a dictionary full of arrays, however, if we were to
remove objects from the arrays in the copy, we’d also be removing them from the arrays in
the original, because both the copies and the original point to the same objects.

In order to deal with this properly, we need to be able to make a deep mutable copy of a dic-
tionary full of arrays. That’s not too hard to do, but where should we put this functionality?

If you said, “in a category,” then great, now you’re thinking with portals! If you didn’t, don’t
worry, it takes a while to get used to this language. Categories, in case you’ve forgotten,
allow you to add additional methods to existing objects without subclassing them. Catego-
ries are frequently overlooked by folks new to Objective-C, because they’re a feature most
other languages don’t have.

With categories, we can add a method to NSDictionary to do a deep copy, returning an
NSMutableDictionary with the same data but not containing the same actual objects.

In your project window, select the Classes folder, and press ⌘N to create a new file. When
the assistant comes up, select Other from the very bottom of the left side. Unfortunately,
there’s no file template for categories, so we’ll just create a couple of empty files to hold it.
Select the Empty File icon, and give this first one a name of NSDictionary-MutableDeepCopy.h.
Repeat the process, the second time using a name of NSDictionary-MutableDeepCopy.m.

TIP
A faster way to create the two files needed for the category is to select the NSObject subclass template and
then delete the file contents. This option will give you both the header and implementation file, saving
you one step.

Put the following code in NSDictionary-MutableDeepCopy.h:

#import <Foundation/Foundation.h>

@interface NSDictionary(MutableDeepCopy)
- (NSMutableDictionary *)mutableDeepCopy;
@end

24594ch08.indd 228 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 229

Flip over to NSDictionary-MutableDeepCopy.m, and add the implementation:

#import "NSDictionary-MutableDeepCopy.h"

@implementation NSDictionary (MutableDeepCopy)
- (NSMutableDictionary *) mutableDeepCopy {
 NSMutableDictionary *ret = [[NSMutableDictionary alloc]
 initWithCapacity:[self count]];
 NSArray *keys = [self allKeys];
 for (id key in keys) {
 id oneValue = [self valueForKey:key];
 id oneCopy = nil;

 if ([oneValue respondsToSelector:@selector(mutableDeepCopy)])
 oneCopy = [oneValue mutableDeepCopy];
 else if ([oneValue respondsToSelector:@selector(mutableCopy)])
 oneCopy = [oneValue mutableCopy];
 if (oneCopy == nil)
 oneCopy = [oneValue copy];
 [ret setValue:oneCopy forKey:key];
 }
 return ret;
}
@end

This method creates a new mutable dictionary and then loops through all the keys of the
original dictionary, making mutable copies of each array it encounters. Since this method
will behave just as if it were part of NSDictionary, any reference to self is a reference to
the dictionary that this method is being called on. The method first attempts to make a deep
mutable copy, and if the object doesn’t respond to the mutableDeepCopy message, it tries
to make a mutable copy. If the object doesn’t respond to the mutableCopy message, it falls
back on making a regular copy to ensure that all the objects contained in the dictionary do
get copied. By doing it this way, if we were to have a dictionary containing dictionaries (or
other objects that supported deep mutable copies), the contained ones would also get deep
copied.

For a few of you, this might be the first time you’ve seen this syntax in Objective-C:

for (id key in keys)

There’s a new feature of Objective-C 2.0, called fast enumeration. Fast enumeration is a
 language-level replacement for NSEnumerator, which you’ll find covered in Learn
Objective C. It allows you to quickly iterate through a collection, such as an NSArray,
without the hassle of creating additional objects or loop variables.

24594ch08.indd 229 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views230

All of the delivered Cocoa collection classes, including NSDictionary, NSArray, and NSSet
support fast enumeration, and you should use this syntax any time you need to iterate over
a collection. It will ensure you get the most efficient loop possible.

You may have noticed that it looks like we have a memory leak here. We allocate and ini-
tialize ret, but we never release it. That’s OK. Because our method has “copy” in its name,
it follows the same memory rules as the copyWithZone: method, which are supposed to
return an object with a retain count of 1.

If we include the NSDictionary-MutableDeepCopy.h header file in one of our other classes,
we’ll be able to call mutableDeepCopy on any NSDictionary object we like. Let’s take advan-
tage of that now.

Updating the Controller Header File
Next, we need to add some outlets to our controller class header file. We’ll need an outlet for
the table view. Up until now, we haven’t needed a pointer to the table view outside of the
datasource methods, but we’re going to need one now, since we’ll need to tell the table to
reload itself based on the result of the search.

We’re also going to need an outlet to a search bar, which is a control used for, well, searching.
In addition to those two outlets, we’re also going to need an additional dictionary. The exist-
ing dictionary and array are both immutable objects, and we need to change both of them
to the corresponding mutable version, so the NSArray becomes an NSMutableArray and
the NSDictionary becomes an NSMutableDictionary.

We won’t need any new action methods in our controller, but we will need a couple of new
methods. For now, just declare them, and we’ll talk about them in detail once we enter the
code.

We’ll also need to conform our class to the UISearchBarDelegate protocol. We’ll need to
become the search bar’s delegate in addition to being the table view’s delegate.

Make the following changes to SectionsViewController.h:

#import <UIKit/UIKit.h>

@interface SectionsViewController : UIViewController
<UITableViewDataSource, UITableViewDelegate, UISearchBarDelegate>
{
 UITableView *table;
 UISearchBar *search;
 NSDictionary *allNames;
 NSMutableDictionary *names;
 NSMutableArray *keys;
 NSDictionary *names;

24594ch08.indd 230 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 231

 NSArray *keys;
}
@property (nonatomic, retain) NSDictionary *names;
@property (nonatomic, retain) NSArray *keys;
@property (nonatomic, retain) IBOutlet UITableView *table;
@property (nonatomic, retain) IBOutlet UISearchBar *search;
@property (nonatomic, retain) NSDictionary *allNames;
@property (nonatomic, retain) NSMutableDictionary *names;
@property (nonatomic, retain) NSMutableArray *keys;
- (void)resetSearch;
- (void)handleSearchForTerm:(NSString *)searchTerm;
@end

Here’s what we just did. The outlet table will point to our table view; the outlet search will
point to the search bar; the dictionary allNames will hold the full data set; the dictionary
names will hold the data set that matches the current search criteria; and keys will hold the
index values and section names. If you’re clear on everything, let’s now modify our view in
Interface Builder.

Modifying the View
Double-click SectionsViewController.xib to open the file in Interface Builder. Next, grab a
Search Bar from the library (see Figure 8-28), and add it to the top of the table view.

Figure 8-28. The Search Bar in the library

You’re trying to drop it into the table view’s header section, a special part of the table view
that lies before the first section. In Interface Builder, the way to do this is to drop the search
bar at the top of the view. Before you let go of the mouse button, you should see a rounded
blue rectangle at the top of the view (Figure 8-29). That’s your indication that if you drop
the search bar now, it will go into the table header. Let go of the mouse button to drop the
search bar once you see that blue rectangle.

Now control-drag from the File’s Owner icon to the table view, and select the table outlet.
Repeat with the search bar, and select the search outlet. Single-click the search bar, and go
to the attributes inspector by pressing ⌘1. It should look like Figure 8-30.

24594ch08.indd 231 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views232

Figure 8-29. The new version of our view Figure 8-30. The attributes inspector
with both a table view and a search bar for the search bar

Type search in the Placeholder field. The word “search” will appear, very lightly, in the search
field. Check the box that says Shows Cancel Button. A Cancel button will appear to the right of
the search field. The user can tap this button to cancel the search. Under the Text Input Traits,
set the popup button labeled Correction to No to indicate that the search bar should not try
and correct the user’s spelling.

Switch to the connections inspector by pressing ⌘2, and drag from the delegate connection
to the File’s Owner icon to tell this search bar that our view controller is also the search bar’s
delegate.

24594ch08.indd 232 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 233

That should be everything we need here, so make sure to save, and let’s head back to Xcode.

Modifying the Controller Implementation
The changes to accommodate the search bar are fairly drastic. Make the following changes
to SectionsViewController.m, and then come on back so we can walk through the changes.

#import "SectionsViewController.h"
#import "NSDictionary-MutableDeepCopy.h"

@implementation SectionsViewController
@synthesize names;
@synthesize keys;
@synthesize table;
@synthesize search;
@synthesize allNames;
#pragma mark -
#pragma mark Custom Methods
- (void)resetSearch {
 NSMutableDictionary *allNamesCopy = [self.allNames mutableDeepCopy];
 self.names = allNamesCopy;
 [allNamesCopy release];
 NSMutableArray *keyArray = [[NSMutableArray alloc] init];
 [keyArray addObjectsFromArray:[[self.allNames allKeys]
 sortedArrayUsingSelector:@selector(compare:)]];
 self.keys = keyArray;
 [keyArray release];
}
- (void)handleSearchForTerm:(NSString *)searchTerm {
 NSMutableArray *sectionsToRemove = [[NSMutableArray alloc] init];
 [self resetSearch];

 for (NSString *key in self.keys) {
 NSMutableArray *array = [names valueForKey:key];
 NSMutableArray *toRemove = [[NSMutableArray alloc] init];
 for (NSString *name in array) {
 if ([name rangeOfString:searchTerm
 options:NSCaseInsensitiveSearch].location == NSNotFound)
 [toRemove addObject:name];
 }

 if ([array count] == [toRemove count])
 [sectionsToRemove addObject:key];

 [array removeObjectsInArray:toRemove];
 [toRemove release];
 }
 [self.keys removeObjectsInArray:sectionsToRemove];

24594ch08.indd 233 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views234

 [sectionsToRemove release];
 [table reloadData];
}
- (void)viewDidLoad {
 NSString *path = [[NSBundle mainBundle] pathForResource:@"sortednames"
 ofType:@"plist"];
 NSDictionary *dict = [[NSDictionary alloc]
 initWithContentsOfFile:path];
 self.names = dict;
 self.allNames = dict;

 [dict release];

 NSArray *array = [[names allKeys] sortedArrayUsingSelector:
 @selector(compare:)];
 self.keys = array;

 [self resetSearch];
 [table reloadData];
 [table setContentOffset:CGPointMake(0.0, 44.0) animated:NO];
}

- (void)didReceiveMemoryWarning {;
 [super didReceiveMemoryWarning];
 // Releases the view if it doesn't have a superview
 // Release anything that's not essential, such as cached data
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.table = nil;
 self.search = nil;
 self.allNames = nil;
 self.names = nil;
 self.keys = nil;
}

- (void)dealloc {
 [table release];
 [search release];
 [allNames release];
 [keys release];
 [names release];
 [super dealloc];
}

24594ch08.indd 234 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 235

#pragma mark -
#pragma mark Table View Data Source Methods
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [keys count];
 return ([keys count] > 0) ? [keys count] : 1;
}

- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section {
 if ([keys count] == 0)
 return 0;
 NSString *key = [keys objectAtIndex:section];
 NSArray *nameSection = [names objectForKey:key];
 return [nameSection count];
}

- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger section = [indexPath section];
 NSUInteger row = [indexPath row];

 NSString *key = [keys objectAtIndex:section];
 NSArray *nameSection = [names objectForKey:key];

 static NSString *sectionsTableIdentifier = @"sectionsTableIdentifier";

 UITableViewCell *cell = [aTableView dequeueReusableCellWithIdentifier:
 sectionsTableIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero
 reuseIdentifier: sectionsTableIdentifier] autorelease];
 }

 cell.text = [nameSection objectAtIndex:row];
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 if ([keys count] == 0)
 return nil;

 NSString *key = [keys objectAtIndex:section];
 return key;
}
- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return keys;

24594ch08.indd 235 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views236

}
#pragma mark -
#pragma mark Table View Delegate Methods
- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [search resignFirstResponder];
 return indexPath;
}
#pragma mark -
#pragma mark Search Bar Delegate Methods
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSString *searchTerm = [searchBar text];
 [self handleSearchForTerm:searchTerm];
}

- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchTerm {
 if ([searchTerm length] == 0) {
 [self resetSearch];
 [table reloadData];
 return;
 }
 [self handleSearchForTerm:searchTerm];
}

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar {
 search.text = @"";
 [self resetSearch];
 [table reloadData];
 [searchBar resignFirstResponder];
}
@end

Copying Data from allNames
Wow, are you still with us after all that typing? Let’s break it down and see what we just did.
We’ll start with the two new methods we added. Here’s the first one:

- (void)resetSearch {
 self.names = [self.allNames mutableDeepCopy];
 NSMutableArray *keyArray = [[NSMutableArray alloc] init];
 [keyArray addObjectsFromArray:[[self.allNames allKeys]
 sortedArrayUsingSelector:@selector(compare:)]];
 self.keys = keyArray;
 [keyArray release];
}

24594ch08.indd 236 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 237

This method will get called any time the search is cancelled or the search term changes. All
it does is create a mutable copy of allNames, assign it to names, and then refresh the keys
array so it includes all the letters of the alphabet. We have to refresh the keys array because,
if a search eliminates all values from a section, we need to get rid of that section too. Other-
wise, the screen gets filled up with headers and empty sections, and it doesn’t look good. We
also don’t want to provide an index to something that doesn’t exist, so as we cull the names
based on the search terms, we also cull the empty sections.

Implementing the Search
The other new method is the actual search:

- (void)handleSearchForTerm:(NSString *)searchTerm {
 NSMutableArray *sectionsToRemove = [[NSMutableArray alloc] init];
 [self resetSearch];

 for (NSString *key in self.keys) {
 NSMutableArray *array = [names valueForKey:key];
 NSMutableArray *toRemove = [[NSMutableArray alloc] init];
 for (NSString *name in array) {
 if ([name rangeOfString:searchTerm
 options:NSCaseInsensitiveSearch].location == NSNotFound)
 [toRemove addObject:name];
 }

 if ([array count] == [toRemove count])
 [sectionsToRemove addObject:key];

 [array removeObjectsInArray:toRemove];
 [toRemove release];
 }
 [self.keys removeObjectsInArray:sectionsToRemove];
 [sectionsToRemove release];
 [table reloadData];
}

Although we’ll kick off the search in the search bar delegate methods, we pulled
 handleSearchForTerm: into its own method, since we’re going to need to use the exact
same functionality in two different delegate methods. By embedding the search in the
handleSearchForTerm: method, we consolidate the functionality into a single place so it’s
easier to maintain and then just call this new method as required.

Since this is the real meat (or tofu, if you prefer) of this section, let’s break this method down
into smaller chunks. First, we create an array that’s going to hold the empty sections as we
find them. We use this array to remove those empty sections later, because it is not safe
to remove objects from a collection while iterating that collection. Since we are using fast

24594ch08.indd 237 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views238

 enumeration, attempting to do that will raise an exception. So, since we won’t be able to
remove keys while we’re iterating through them, we store the sections to be removed in an
array, and after we’re all done enumerating, we remove all the objects at once. After allocat-
ing the array, we reset the search.

 NSMutableArray *sectionsToRemove = [[NSMutableArray alloc] init];
 [self resetSearch];

Next, we enumerate through all the keys in the newly restored keys array.

 for (NSString *key in self.keys) {

Each time through the loop, we grab the array of names that corresponds to the current
key and create another array to hold the values we need to remove from the names array.
Remember, we’re removing names and sections, so we have to keep track of which keys are
empty as well as which names don’t match the search criteria.

 NSMutableArray *array = [names valueForKey:key];
 NSMutableArray *toRemove = [[NSMutableArray alloc] init];

Next, we iterate through all the names in the current array. So, if we’re currently working
through the key of “A,” this loop will enumerate through all the names that begin with “A.”

 for (NSString *name in array) {

Inside this loop, we use one of NSString’s methods that returns the location of a substring
within a string. We specify an option of NSCaseInsensitiveSearch to tell it we don’t care
about the search term’s case. In other words, “A” is the same as “a.” The value returned by
this method is an NSRange struct with two members, location and length. If the search
term was not found, the location will be set to NSNotFound, so we just check for that. If the
NSRange that is returned contains NSNotFound, we add the name to the array of objects to
be removed later.

 if ([name rangeOfString:searchTerm
 options:NSCaseInsensitiveSearch].location == NSNotFound)
 [toRemove addObject:name];
 }

After we’ve looped through all the names for a given letter, we check to see whether the
array of names to be removed is the same length as the array of names. If it is, we know this
section is now empty, and we add it to the array of keys to be removed later.

 if ([array count] == [toRemove count])
 [sectionsToRemove addObject:key];

24594ch08.indd 238 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 239

Next, we actually remove the nonmatching names from this section’s arrays and then release
the array we used to keep track of the names. It’s very important to avoid using convenience
methods inside of loops like this as much as possible, because they will put something into
the autorelease pool every time through the loop. However, the autorelease pool can’t get
flushed until we’re all done with our loop.

 [array removeObjectsInArray:toRemove];
 [toRemove release];
 }

Finally, we remove the empty sections, release the array used to keep track of the empty sec-
tions, and tell the table to reload its data.

 [self.keys removeObjectsInArray:sectionsToRemove];
 [sectionsToRemove release];
 [table reloadData];
}

Changes to viewDidLoad
Down in viewDidLoad, we made a few changes. First of all, we now load the property list
into the allNames dictionary instead of the names dictionary and delete the code that
load the keys array because that is now done in the resetSearch method. We then call
the resetSearch method, which populates the names mutable dictionary and the keys
array for us. After that, we call reloadData on our tableView. In the normal flow of the
program, reloadData will get called before the user ever sees the table, so most of the
time it’s not necessary to call it in viewDidLoad:. However, in order for the line after it,
setContentOffset:animated: to work, we need to make sure that the table is all set up
before we do that, and the way we do that is to call reloadData on the table.

 [table reloadData];
 [table setContentOffset:CGPointMake(0.0, 44.0) animated:NO];

So, what does setContentOffset:animated: do? Well, it does exactly what it sounds like.
It offsets the contents of the table, in our case, by 44 pixels, the height of the search bar. This
causes the search bar to be scrolled off the top when the table first comes up.

Changes to Datasource Methods
If you skip down to the datasource methods, you’ll see we made a few minor changes there.
Because the names dictionary and keys array are still being used to feed the datasource,
these methods are basically the same as they were before. We did have to account for the
facts that table views always have a minimum of one section and yet the search could
potentially exclude all names from all sections. So, we added a little code to check for the
situation where all sections were removed, and in those cases, we feed the table view a

24594ch08.indd 239 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views240

 single section with no rows and a blank name. This avoids any problems and doesn’t give
any incorrect feedback to the user.

Adding a Table View Delegate Method
Below the datasource methods, we’ve added a single delegate method. If the user clicks
a row while using the search bar, we want the keyboard to go away. We accomplish this
by implementing tableView:willSelectRowAtIndexPath: and telling the search bar
to resign first responder status, which will cause the keyboard to retract. Next, we return
indexPath unchanged. We could also have done this in tableView:didSelectRowAtIndex
Path:, but because we’re doing it here, the keyboard retracts a tiny bit sooner.

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [search resignFirstResponder];
 return indexPath;
}

Adding Search Bar Delegate Methods
The search bar has a number of methods that it calls on its delegate. When the user taps
return or the search key on the keyboard, searchBarSearchButtonClicked: will be called.
Our version of this method grabs the search term from the search bar and calls our search
method, which will remove the nonmatching names from names and the empty sections
from keys.

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSString *searchTerm = [searchBar text];
 [self handleSearchForTerm:searchTerm];
}

The searchBarSearchButtonClicked: method should be implemented any time you use a
search bar. We also implement another search bar delegate method in addition to that one,
but the next requires a bit of caution. This next method implements a live search. Every time
the search term changes, regardless of whether the user has selected the search button or
tapped return, we redo the search. This behavior is very user friendly, as the users can see
the results change while typing. If users pare the list down far enough on the third character,
they can stop typing and select the row they want.

You can easily hamstring the performance of your application implementing live search,
especially if you’re displaying images or have a complex data model. In this case, with 2,000
strings and no images or accessory icons, things actually work pretty well, even on a first-
generation iPhone or iPod touch.

24594ch08.indd 240 6/23/09 11:34:36 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 241

Do not assume that snappy performance in the simulator translates to snappy performance
on your device. If you’re going to implement a live search like this, you need to test exten-
sively on actual hardware to make sure your application stays responsive. When in doubt,
don’t use it. Your users will likely be perfectly happy tapping the search button.

Now that you’ve been adequately warned, here’s how you handle a live search. You imple-
ment the search bar delegate method searchBar:textDidChange: like so:

- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchTerm {
 if ([searchTerm length] == 0) {
 [self resetSearch];
 [table reloadData];
 return;
 }
 [self handleSearchForTerm:searchTerm];
}

Notice that we check for an empty string. If the string is empty, we know all names are going
to match it, so we simply reset the search and reload the data, without bothering to enumer-
ate over all the names.

Last, we implement a method that allows us to get notified when the user clicks the Cancel
button on the search bar:

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar {
 search.text = @"";
 [self resetSearch];
 [table reloadData];
 [searchBar resignFirstResponder];
}

When the user clicks Cancel, we set the search term to an empty string, reset the search,
and reload the data so that all names are showing. We also tell the search bar to yield first
responder status so that the keyboard drops away and the user can resume working with
the table view.

If you haven’t done so already, fire it up and try out the search functionality. Remember, the
search bar is scrolled just off the top of the screen, so drag down to bring it into view. Click
in the search field and start typing. The name list should trim to match the text you type. It
works, right?

But, there’s one thing that’s not quite right. The index is overlapping the Cancel button
 (Figure 8-31).

24594ch08.indd 241 6/23/09 11:34:37 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views242

Figure 8-31. The way things are working now, the
search bar cancel button is overlapped by the index.

It’s a subtle thing, but iPhone users often notice subtle things. How does Apple deal with
this problem in the Contacts application? They make the index disappear when you tap the
search bar. We can do that. First, let’s add an instance variable to keep track of whether the
user is currently using the search bar. Add the following to SectionsViewController.h:

@interface SectionsViewController : UIViewController
<UITableViewDataSource, UITableViewDelegate, UISearchBarDelegate>
{
 UITableView *table;
 UISearchBar *search;
 NSDictionary *allNames;
 NSMutableDictionary *names;
 NSMutableArray *keys;

 BOOL isSearching;
}
@property (nonatomic, retain) IBOutlet UITableView *table;
@property (nonatomic, retain) IBOutlet UISearchBar *search;
@property (nonatomic, retain) NSDictionary *allNames;
@property (nonatomic, retain) NSMutableDictionary *names;
@property (nonatomic, retain) NSMutableArray *keys;
- (void)resetSearch;
- (void)handleSearchForTerm:(NSString *)searchTerm;
@end

Then we need to modify sectionIndexTitlesForTableView: method to return nil if the
user is searching:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 if (isSearching)
 return nil;

 return keys;
}

24594ch08.indd 242 6/23/09 11:34:37 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 243

We need to implement a new delegate method to set isSearching to YES when searching
begins. Add the following method to SectionsViewController.m:

- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearching = YES;
 [table reloadData];
}

This method gets called when the search bar is tapped. In it, we set isSearching to YES,
then we tell the table to reload itself, which causes the index to disappear. We also have to
remember to set isSearching to NO when the user is done searching. There are two ways
that can happen: the user can press the Cancel button, or they can tap a row in the table.
Therefore, we have to add code to the searchBarCancelButtonClicked: method:

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar {
 isSearching = NO;
 search.text = @"";
 [self resetSearch];
 [table reloadData];
 [searchBar resignFirstResponder];
}

and also to the tableView:willSelectRowAtIndexPath: method:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [search resignFirstResponder];
 isSearching = NO;
 search.text = @"";
 [tableView reloadData];
 return indexPath;
}

Now, try it again, and when you tap the search bar, the index will disappear until you’re done
searching.

Adding a Magnifying Glass to the Index
Because we offset the tableview’s content, the search bar is not visible when the application
first launches, but a quick flick down brings the search bar into view so it can be used. It is
also acceptable to put a search bar above rather than in the table view so that it’s always vis-
ible, but this eats up valuable screen real estate. Having the search bar scroll with the table
uses the iPhone’s small screen more efficiently, and the user can always get to the search
bar quickly by tapping in the status bar at the top of the screen. But, not everybody knows
that tapping in the status bar takes you to the top of the current table. What would be

24594ch08.indd 243 6/23/09 11:34:37 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views244

ideal, would be if we could put a magnifying glass at the top of the index the way that the
 Contacts application does (Figure 8-32).

Figure 8-32. The Contacts application has a
magnifying glass icon in the index that takes you
to the search bar. Prior to SDK 3, this was not
available to other applications, but now it is.

Well, guess what? We can. One of the new features in iPhone SDK 3 is the ability to put a
magnifying glass in a table index. Let’s do that now for our application. There are only three
steps involved in this. First, we have to add a special value to our keys array to indicate we
want the magnifying glass, we have to prevent the iPhone from printing a section header in
the table for that special value, and we need to tell the table to scroll to the top when that
item is selected. Let’s tackle them in order.

ADDING THE SPECIAL VALUE TO THE KEYS ARRAY

To add the special value to our keys array, all we have to do is add one line of code to the
resetSearch method:

- (void)resetSearch {
 self.names = [self.allNames mutableDeepCopy];
 NSMutableArray *keyArray = [[NSMutableArray alloc] init];
 [keyArray addObject:UITableViewIndexSearch];

24594ch08.indd 244 6/23/09 11:34:37 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views 245

 [keyArray addObjectsFromArray:[[self.allNames allKeys]
 sortedArrayUsingSelector:@selector(compare:)]];
 self.keys = keyArray;
 [keyArray release];
}

SUPPRESSING THE SECTION HEADER

Now, we need to suppress that value from coming up as a section title. We do that, by add-
ing a check in the existing tableView:titleForHeaderInSection: method, and return
nil when it asks for the title for the special search section:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 if ([keys count] == 0)
 return nil;

 NSString *key = [keys objectAtIndex:section];
 if (key == UITableViewIndexSearch)
 return nil;
 return key;
}

TELLING THE TABLE VIEW WHAT TO DO

Finally, we have to tell the tableview what to do when the user taps on the magnifying glass
in the index. When the user taps the magnifying class, the delegate method tableView:
sectionForSectionIndexTitle:atIndex: gets called, if it is implemented.

Add this method to the bottom of SectionsViewController.m, just above the @end:

- (NSInteger)tableView:(UITableView *)tableView
sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index {
 NSString *key = [keys objectAtIndex:index];
 if (key == UITableViewIndexSearch) {
 [tableView setContentOffset:CGPointZero animated:NO];
 return NSNotFound;
 }
 else return index;
}

To tell it to go to the search box, we have to do two things. First, we have to get rid of
the content offset we added earlier, and then we have to return NSNotFound. When the
tableview gets this response, it knows to scroll up to the top, so now that we’ve removed
the offset, it will scroll to the search bar rather than to the top section.

24594ch08.indd 245 6/23/09 11:34:37 AM

Download at Boykma.Com

CHAPTER 8: Introduction to Table Views246

And there you have it—live searching in an iPhone table, with a magnifying glass in the
index!

SDK 3 added even more cool search stuff. Interested? Go to the documentation browser
and do a search for UISearchDisplay to read up on UISearchDisplayController and
UISearchDisplayDelegate. You’ll likely find this much easier to understand once you’ve
made your way through Chapter 9.

Putting It All on the Table
Well, how are you doing? This was a pretty hefty chapter, and you’ve learned a ton! You
should have a very solid understanding of the way flat tables work. You should understand
how to customize tables and table view cells as well as how to configure table views. You
also know how to implement a search bar, which is a vital tool in any iPhone application that
presents large volumes of data. Make sure you understand everything we did in this chapter,
because we’re going to build on it.

We’re going to continue working with table views in the next chapter, and you’re going to
learn how to use them to present hierarchical data. You’ll see how to create content views
that allow the user to edit data selected in a table view, as well as how to present checklists
in tables, embed controls in table rows, and delete rows.

24594ch08.indd 246 6/23/09 11:34:37 AM

Download at Boykma.Com

Chapter 9

247

i

Navigation
Controllers and
Table Views

n the previous chapter, you mastered the basics of working with table views.
In this chapter, you’re going to get a whole lot more practice, because we’re
going to explore navigation controllers. Table views and navigation control-
lers work hand in hand. Strictly speaking, a navigation controller doesn’t need
a table view in order to do its thing. As a practical matter, however, when you
implement a navigation controller, you almost always implement at least one
table, and usually several, because the strength of the navigation controller is
in the ease with which it handles complex hierarchical data. On the iPhone’s
small screen, hierarchical data is best presented using a succession of table
views.

In this chapter, we’re going to build an application progressively, just as we
did with the Pickers application back in Chapter 7. We’re going to get the
navigation controller and the first view controller working, and then we’ll start
adding more controllers and more layers to the hierarchy. Each view control-
ler we create will reinforce some aspect of table use or configuration. You’re
going to see how to drill down from table views into child tables and also from
table views down into content views where detailed data can be viewed and
even edited. You’re also going to see how to use a table list to allow the user to
select from multiple values and learn how to use edit mode to allow rows to
be deleted from a table view.

That is a lot, isn’t it? Well, nothing for it but to get started. Let’s go!

24594ch09.indd 247 6/23/09 11:45:26 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views248

Navigation Controllers
The main tool you’ll use to build hierarchical applications is UINavigationController.
UINavigationController is similar to UITabBarController in that it manages, and
swaps in and out, multiple content views. The main difference between the two is that
 UINavigationController is implemented as a stack, which makes it well suited to
working with hierarchies.

Already know everything there is to know about stacks? Scan through this section and we’ll
meet you at the beginning of the next section, “A Stack of Controllers.” New to stacks? Fortu-
nately, it’s a pretty easy concept.

Stacky Goodness
A stack is a commonly used data structure that works on the principle of last in, first out.
Believe it or not, a Pez dispenser is a great example of a stack. Ever try to load one? Accord-
ing to the little instruction sheet that comes with each and every Pez dispenser, there are a
few easy steps. First, unwrap the pack of Pez candy. Second, open the dispenser by tipping
its head straight back. Third, grab the stack (notice the clever way we inserted the word
“stack” in there!) of candy, holding it firmly between your pointer finger and thumb, and
insert the column into the open dispenser. Fourth, pick up all the little pieces of candy that
flew all over the place because these instructions just never work.

OK, that example was not particularly useful. But what happens next is: as you pick up
the pieces and jam them, one at a time, into the dispenser, you are working with a stack.
Remember, we said a stack was last in, first out. That also means first in, last out. The first
piece of Pez you push into the dispenser will be the last piece that pops out. The last piece
of Pez you push in there will be the first piece you pop out.

A computer stack follows the same rules. When you add an object to a stack, it’s called a push:
you push an object onto the stack. When you remove an object from the stack, it’s called a
pop. When you pop an object off the stack, it’s always the last one you pushed onto the stack.
The first object you push onto the stack will always be the last one you pop off the stack.

A Stack of Controllers
A navigation controller maintains a stack of view controllers. Any kind of view controller is
fair game for the stack. When you design your navigation controller, you’ll need to specify
the very first view the user sees. That view is the bottommost view in the view hierarchy
and its controller is called the root view controller. The root view controller is the very first
view controller the navigation controller pushes onto its stack. As the user selects the next
view to look at, a new view controller is pushed onto the stack, and the view it controls is
shown to the user. We refer to these new view controllers as subcontrollers. As you’ll see,

24594ch09.indd 248 6/23/09 11:45:26 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 249

this chapter’s application, Nav, is made up of a navigation
controller and six subcontrollers.

Take a look at Figure 9-1. Notice the navigation button in
the upper-left corner of the current view. The navigation
button is similar to a web browser’s back button. When
the user taps that button, the current view controller is
popped off the stack, and the previous view becomes the
current view.

We love this design pattern. It allows you to build complex
hierarchical applications iteratively. You don’t have to know
the entire hierarchy to get things up and running. Each
controller only needs to know about its child controllers so
it can push the appropriate new controller object onto the
stack when the user makes a selection. You can build up a
large application from many small pieces this way, which is
exactly what we’re going to do in this chapter.

Nav, a Hierarchical
 Application in Six Parts
The application we’re about to build will show you how to
do most of the common tasks associated with displaying a
hierarchy of data. When the application launches, you’ll be
presented with a list of options (see Figure 9-2). Each of the
rows in this top-level view represents a different view con-
troller that will get pushed onto the navigation controller’s
stack when that row is selected.

The icons on the right side of each row are called accessory icons. This particular accessory
icon (the gray arrow) is called a disclosure indicator and is used to tell the user that touch-
ing that row will drill down to another table view.

Using a disclosure indicator to drill down to a view with detailed information about the
selected row is not appropriate. Instead, use a detail disclosure button, as shown in
Figure 9-3, which shows the first of our application’s six subcontrollers. This view appears
when you select Disclosure Buttons from the top view shown in Figure 9-2. A detail disclo-
sure button tells you that selecting that row will reveal, and perhaps allow you to edit, more
detailed information about the current row.

Figure 9-1. The Settings
application uses a navigation
 controller. In the upper left (1) is
the navigation button used to
pop the current view controller
off the stack, returning you to
the previous level of the hierar-
chy. The title (2) of the current
content view controller is also
displayed.

24594ch09.indd 249 6/23/09 11:45:26 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views250

Figure 9-2. This chapter’s appli-
cation’s top-level view. Note
the accessory icons on the right
side of the view. This particular
type of accessory icon is called a
disclosure indicator and tells the
user that touching that row will
drill down to another table view.

Figure 9-3. The first of the Nav
application’s six subcontrollers
implements a table whose rows
each contain a detail disclosure
button.

Unlike the disclosure indicator, the detail disclosure button is not just an icon but a control
that the user can tap, so you can have two different options available for a given row. One
action is triggered when the user selects the row. The other action is triggered when the
user taps the disclosure button.

A good example of the proper use of the detail disclosure button is found in the Phone
application. Selecting a person’s row from the Favorites tab places a call to the person whose
row you touched, but selecting the disclosure button next to a name takes you to detailed
contact information. The YouTube application is another great example. Selecting a row
plays a video, but tapping the detail disclosure button takes you to more detailed informa-
tion about the video.

In the Contacts application, the list of contacts does not feature detail disclosure buttons
even though selecting a row does take you to a detail view. Since there is only one option
available for each row in the Contacts application, no accessory icon is displayed.

24594ch09.indd 250 6/23/09 11:45:26 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 251

To restate, if tapping a row takes you to a more detailed view of that row, you’ll either use no
accessory icon or use a detail disclosure button, if you want to support two different options
for the row. If tapping a row takes you to another view entirely, one that is not a more
detailed view of that row, use a disclosure indicator (gray arrow) to mark the row.

The second of our application’s six subcontrollers is shown in Figure 9-4. This is the view that
appears when you select Check One in Figure 9-2.

This view comes in handy when you want to present a list from which only one item can be
selected. This approach is to iPhone as radio buttons are to Mac OS X. These lists use a check-
mark to mark the currently selected row.

The third of our application’s six subcontrollers is shown in Figure 9-5. This view features a
tappable button in each row’s accessory view. The accessory view is the far right part of the
table view cell that usually holds the accessory icon but can be used for more. When we get
to this part of our application, you’ll see how to create controls in the accessory view.

Figure 9-4. The second of the
Nav application’s six subcon-
trollers allows you to select one
row from many.

Figure 9-5. The third of the Nav
application’s six subcontrollers
adds a button to the accessory
view of each table view cell.

The fourth of our application’s six subcontrollers is shown in Figure 9-6. In this view, we’ll let
the user rearrange the order of the rows in a list by having the table enter edit mode (more
on this when we get to it in code later in this chapter).

24594ch09.indd 251 6/23/09 11:45:26 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views252

The fifth of our application’s six subcontrollers is shown in Figure 9-7. In this view, we’re
going to show another use of edit mode by allowing the user to delete rows from our table.

The sixth and last of our application’s six subcontrollers is shown in Figure 9-8, and it shows
an editable detail view using a grouped table. This technique for detail view is used widely
by the applications that ship on the iPhone.

So very much to do. Let’s get started!

Figure 9-6. The fourth of the
Nav application’s six subcon-
trollers lets the user rearrange
rows in a list by touching and
dragging the move icon.

Figure 9-7. The fifth of the Nav
application’s six subcontrollers
implements edit mode to allow
the user to delete items from the
table.

Figure 9-8. The sixth and last of
the Nav application’s six subcon-
trollers implements an editable
detail view using a grouped
table.

Constructing the Nav Application’s Skeleton
Xcode offers a perfectly good template for creating navigation-based applications, and
you will likely use it much of the time when you need to create hierarchical applications.
However, we’re not going to use that one today. Nope. We’re going to construct our naviga-
tion-based application from the ground up so you get a feel for how everything fits together.
It’s not really very different from the way we built the tab bar controller in Chapter 7, so you
shouldn’t have any problems keeping up. Using the provided template is no different from
what we’ll be doing today except that you’ll be able to skip the first several steps in the
future.

24594ch09.indd 252 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 253

In Xcode, press ⌘⇧N to create a new project, and select Window-Based Application from
the iPhone template list, making sure that Use Core Data for storage is not checked. Give
your new project a name of Nav. As you’ll see, if you click the Classes and Resources folders,
this template gives you an application delegate, a MainWindow.xib, and not much else. We
need to add a navigation controller to MainWindow.xib, which will be our application’s root
controller. And, since all navigation controllers have to have their own root view controller,
we’ll need to create that as well. Since we’re already in Xcode, let’s create the files needed to
implement the root view controller.

Creating the First Level View Controller
In this chapter, we’re going to be subclassing UITableViewController instead of
 UIViewController for our table views. When we subclass UITableViewController, we
inherit some nice functionality from that class that will create a table view with no need
for a nib file. We can provide a table view in a nib, as we did last chapter, but if we don’t,
UITableViewController will create a table view automatically, that takes up the entire
space available and will connect the appropriate outlets in our controller class and make
our controller class the delegate and datasource for that table. When all you need for a
 specific controller is a table, subclassing UITableViewController is the way to go.

In your project window, select the Classes folder in the Groups & Files pane, expand-
ing as necessary, and then press ⌘N or select New File… from the File menu. When
the new file assistant comes up, select Cocoa Touch Class, select Objective-C class,
and then select NSObject from the Subclass of pop-up menu. Click Next. Give this
file a name of FirstLevelViewController.m, and make sure that you check Also create
“FirstLevelViewController.h”.

You may have noticed an entry named UITableViewController in the Subclass of pop-up
menu. When creating your own applications, please feel free to use that template. We didn’t
use that template, purely to keep things simple. We didn’t want you to have to spend time
sorting through all the unneeded template methods trying to figure out where to insert or
delete code. By creating an NSObject subclass and, in its declaration, changing the super-
class to UITableViewController, we get a smaller, more manageable file. Once the files
have been created, single-click FirstLevelViewController.h, and make the following change so
FirstLevelViewController is a subclass of UITableViewController:

#import <UIKit/UIKit.h>

@interface FirstLevelViewController : NSObject {
@interface FirstLevelViewController : UITableViewController {

}
@end

24594ch09.indd 253 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views254

The two files we just created contain the controller class for the first table the user sees. This
is not, however, going to be our application’s root controller. As with the Pickers application
in Chapter 7, the root controller for our application will be a class provided by Apple called a
navigation controller, which we don’t even need to subclass.

Setting Up the Navigation Controller
Before we get into our code, let’s talk about the names we use to refer to the various control-
lers that make up our application. At the root of our application is the controller whose view
gets added to the window, known as the root controller. In our case, the root controller is the
navigation controller that will swap in and out all the other views that make up our hierarchy
of views.

Here’s where things get a bit confusing. As it turns out, the UINavigationController class
refers to a root view controller. For example, the UINavigationController class features
methods called initWithRootViewController: and popToRootViewControllerAnimated:.
This reference to a root view controller is really talking about the view controller on the bot-
tom of the navigation stack, which is the first view presented to the user when launching the
application for the first time. This is different from the “root controller,” which is the naviga-
tion controller itself. Confusing, right?

In our case, the navigation controller’s root view controller is the six-row view shown
in Figure 9-2. This can be a point of confusion, however, since our application’s root
view controller (the UINavigationController) will itself have a root view controller. In
order to avoid confusion between the two root controllers, we won’t be using the term
“root view controller” for either. Instead, we’ll refer to the application’s root controller as
 navController, and as you just saw in the previous section, we’ll refer to navController’s
root view controller as FirstLevelController, because it’s the first level in the visual hier-
archy presented to the user.

Take a moment to make sense of all this and file it away in permanent storage. And now,
back to our regularly scheduled program.

Let’s start by adding an outlet for our application’s root view controller, navController, in
NavAppDelegate.h:

#import <UIKit/UIKit.h>

@interface NavAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 UINavigationController *navController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController

24594ch09.indd 254 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 255

 *navController;
@end

Next, we need to hop over to the implementation file and add the @synthesize statement
for navController. We’ll also add navController’s view as a subview of our application’s
window so that it gets shown to the user. Single-click NavAppDelegate.m, and make the fol-
lowing changes:

#import "NavAppDelegate.h"

@implementation NavAppDelegate

@synthesize window;
@synthesize navController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after application launch
 [window addSubview: navController.view];
 [window makeKeyAndVisible];
}
- (void)dealloc {
 [window release];
 [navController release];
 [super dealloc];
}
@end

Save both of these files. Next, we have to create a navigation controller, connect it to the
navController outlet we just declared, and then tell the navigation controller what to use
as its root view controller.

Expand the Resources folder in the Groups & Files pane
if necessary; then double-click MainWindow.xib to
open that file in Interface Builder. Look in the library
for a Navigation Controller (see Figure 9-9), and drag
one over to the nib’s main window, which is the win-
dow labeled MainWindow.xib, not the one labeled
Window.

Control-drag from the Nav App Delegate icon to the
new Navigation Controller icon, and select the nav-
Controller outlet. We’re almost done, but the next task
is a little tricky. We need to tell the navigation controller where to find its root view control-
ler. The easiest way to do that is to change the nib’s main window into list mode using the
middle View Mode button in the toolbar of that window (see Figure 9-10).

Figure 9-9. The Navigation Controller
in the library

24594ch09.indd 255 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views256

Click the little disclosure triangle to the left of Navi-
gation Controller to expand it. Underneath it, you’ll
find two items, Navigation Bar and View Controller
(Root View Controller).

Single-click the View Controller (Root View Controller)
icon, and press ⌘4 to bring up the identity inspector.
Change the underlying class to FirstLevelViewCon-
troller, and press return to commit the change.
Switch to the attributes inspector using ⌘1. Here, if
we wanted to, we could also specify a nib file from
which it should load the root-level view. Instead,
we’re going to leave the NIB Name field blank, which
is how we indicate that the table view controller should create a table view instance for us.
That’s all the changes we need here, so save, close the window, and go back to Xcode.

Now, of course, we need a list for our root view to display. In the last chapter, we used simple
arrays of strings. In this application, the first level view controller is going to manage a list of
its subcontrollers, which we will be building throughout the chapter. Tapping any row will
cause an instance of the selected view controller to get pushed onto the navigation control-
ler’s stack. We also want to be able to display an icon next to each row, so instead of adding
a UIImage property to every subcontroller that we create, we’re going to create a subclass
of UITableViewController that has a UIImage property to hold the row icon. We will then
subclass this new class instead of subclassing UITableViewController directly, and as a
result, all of our subclasses will get that UIImage property for free, which will make our code
much cleaner.

We will never actually create an instance of this new class. It exists solely to let us add a com-
mon item to the rest of the controllers we’re going to write. In many languages, we would
declare this as an abstract class, but Objective-C doesn’t support abstract classes. We can
make classes that aren’t intended to be instantiated, but the compiler won’t prevent us from
actually creating them the way it does in many other languages. Objective-C is a much more
permissive language than most other popular languages, and this can be a little hard to get
used to.

Single-click the Classes folder in Xcode, and press ⌘N to bring up the new file assistant.
Select Cocoa Touch Class from the left pane, select Objective-C class, and select NSObject for
Subclass of. Give the new file the name SecondLevelViewController.m. Be sure to create the .h
file as well. Once the new files are created, select SecondLevelViewController.h, and make the
following changes:

Figure 9-10. Switching MainWindow.
xib’s main window into list mode

24594ch09.indd 256 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 257

#import <UIKit/UIKit.h>

@interface SecondLevelViewController : NSObject {
@interface SecondLevelViewController : UITableViewController {
 UIImage *rowImage;
}
@property (nonatomic, retain) UIImage *rowImage;
@end

Over in SecondLevelViewController.m, add the following line of code:

#import "SecondLevelViewController.h"

@implementation SecondLevelViewController
@synthesize rowImage;
@end

Any controller class that we want to implement as a second-level controller—in
other words, any controller that the user can navigate directly to from the first table
shown in our application—should subclass SecondLevelViewController instead of
 UITableViewController. Because we’re subclassing SecondLevelViewController, all of
those classes will have a property they can use to store a row image, and we can write our
code in FirstLevelViewController before we’ve actually written any concrete second-
level controller classes by using SecondLevelViewController as a placeholder.

Let’s do that now. First, declare an array in FirstLevelViewController.h:

#import <UIKit/UIKit.h>

@interface FirstLevelViewController : UITableViewController {
 NSArray *controllers;
}
@property (nonatomic, retain) NSArray *controllers;
@end

The array we just added will hold the instances of the second-level view controllers. We’ll use
it to feed data to our table.

Add the following code to FirstLevelViewController.m, and then come on back and gossip
with us, ’K?

#import "FirstLevelViewController.h"
#import "SecondLevelViewController.h"

@implementation FirstLevelViewController
@synthesize controllers;
- (void)viewDidLoad {
 self.title = @"First Level";

24594ch09.indd 257 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views258

 NSMutableArray *array = [[NSMutableArray alloc] init];
 self.controllers = array;
 [array release];
 [super viewDidLoad];
}
- (void)viewDidUnload {
 self.controllers = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [controllers release];
 [super dealloc];
}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.controllers count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *FirstLevelCell= @"FirstLevelCell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 FirstLevelCell];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier: FirstLevelCell] autorelease];
 }
 // Configure the cell
 NSUInteger row = [indexPath row];
 SecondLevelViewController *controller =
 [controllers objectAtIndex:row];
 cell.textLabel.text = controller.title;
 cell.imageView.image = controller.rowImage;
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}
#pragma mark -
#pragma mark Table View Delegate Methods
- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger row = [indexPath row];
 SecondLevelViewController *nextController = [self.controllers
 objectAtIndex:row];

24594ch09.indd 258 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 259

 [self.navigationController pushViewController:nextController
 animated:YES];
}
@end

The first thing we want you to notice is that we’ve imported that new SecondLevelView-
Controller.h header file. Doing that lets us use the SecondLevelViewController class in our
code so that the compiler will know about the rowImage property.

Next comes the viewDidLoad method. The first thing we do is set self.title. A naviga-
tion controller knows what to display in the title of its navigation bar by asking the currently
active controller for its title. Therefore, it’s important to set the title for all controller instances
in a navigation-based application, so the user knows where they are at all times.

We then create a mutable array and assign it to the controllers property we declared
earlier. Later, when we’re ready to add rows to our table, we will add view controllers to this
array, and they will show up in the table automatically. Selecting any row will automatically
cause the corresponding controller’s view to get presented to the user.

TIP
Did you notice that our property is declared as an NSArray, but that we’re creating an NSMutable
Array? It’s perfectly acceptable to assign a subclass to a property like this. In this case, we use the muta-
ble array in viewDidLoad to make it easier to add new controllers in an iterative fashion, but we leave
the property declared as an immutable array as a message to other code that they shouldn’t be modifying
this array.

The final piece of the viewDidLoad method is the call to [super viewDidLoad]. We do
this because we are subclassing UITableViewController. You should always call [super
 viewDidLoad] when you override the viewDidLoad method, because there’s no way to
know if our parent class does something important in its own viewDidLoad method.

The tableView:numberOfRowsInSection: method here is identical to ones you’ve seen
in the past; it simply returns the count from our array of controllers. The tableView:cellF
orRowAtIndexPath: method is also very similar to ones we’ve written in the past. It gets a
dequeued cell, or creates a new one if there aren’t any, and then grabs the controller object
from the array corresponding to the row being asked about. It then sets the cell’s textLabel
and image properties using the title and rowImage from that controller.

Notice that we are assuming the object retrieved from the array is an instance of Second
LevelViewController and are assigning the controller’s rowImage property to a UIImage.
This step will make more sense when we declare and add the first concrete second-level
controller to the array in a few minutes.

24594ch09.indd 259 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views260

The last method we added is the most important one here, and it’s the only functionality
that’s truly new. You’ve seen the tableView:didSelectRowAtIndexPath: method before,
of course. It’s the one that gets called after a user taps a row. If tapping a row needs to trig-
ger a drill down, this is how we do it. First, we get the row from indexPath:

 NSUInteger row = [indexPath row];

Next, we grab the correct controller from our array that corresponds to that row:

 SecondLevelViewController *nextController =
 [self.controllers objectAtIndex:row];

Next, we use our navigationController property, which points to our application’s navi-
gation controller, to push the next controller, the one we pulled from our array, onto the
navigation controller’s stack:

 [self.navigationController pushViewController:nextController
 animated:YES];

That’s really all there is to it. Each controller in the hierarchy
need only know about its children. When a row is selected,
the active controller is responsible for getting or creating a
new subcontroller, setting its properties if necessary (it’s not
necessary here), and then pushing that new subcontroller
onto the navigation controller’s stack. Once you’ve done
that, everything else is handled automatically by the naviga-
tion controller.

At this point, the application skeleton is done. Save all your
files, and build and run to make sure all your typing took
hold. If all is well, the application should launch, and a navi-
gation bar with the title First Level should appear. Since our
array is currently empty, no rows will display at this point
(see Figure 9-11).

Now, we’re ready to start developing the second-level views.
Before we do that, go grab the image icons from the 09 Nav
directory. A subdirectory called Images should have eight
.png images, six that will act as row images and an addi-
tional two that we’ll use to make a button look nice later in
the chapter. Add all eight of them to the Resources folder of
your Xcode project before proceeding.

Figure 9-11. The application
skeleton in action

24594ch09.indd 260 6/23/09 11:45:27 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 261

Our First Subcontroller: The Disclosure
Button View
Let’s implement the first of our second-level view controllers. To do that, we’ll first need to
create a subclass of SecondLevelViewController.

Select the Classes folder in Xcode, and press ⌘N to bring up the new file assistant again.
Select Cocoa Touch Class in the left pane, and then select Objective-C class and NSObject
for Subclass of. Name the file DisclosureButtonController.m, and make sure the checkbox
for creating the header file is checked. This class will manage the table of movies that will
be displayed when the user clicks the Disclosure Buttons item from the top-level view (see
 Figure 9-3).

When the user clicks any movie title, the application will drill down into another view
that will report which row was selected. As a result, we’re also going to need a detail
view for the user to drill down into, so repeat the steps to create another file, and call it
DisclosureDetailController.m. Be sure to check the checkbox so the header file is created
as well.

The detail view will be a very simple view with just a single label that we can set. It won’t be
editable, and we’ll just use this to show how to pass values into a child controller. Because
this controller will not be responsible for a table view, we also need a nib to go along with
the controller class. Before we create the nib, let’s quickly add the outlet for the label. Make
the following changes to DisclosureDetailController.h:

#import <Foundation/Foundation.h>

@interface DisclosureDetailController : NSObject {
@interface DisclosureDetailController : UIViewController {
 UILabel *label;
 NSString *message;
}
@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) NSString *message;
@end

Why, pray tell, are we adding both a label and a string? Remember the concept of lazy load-
ing? Well, view controllers use lazy loading behind the scenes as well. When we create our
controller, it won’t load its nib file until it actually gets displayed. When the controller is
pushed onto the navigation controller’s stack, we can’t count on there being a label to set.
If the nib file has not been loaded, label will just be a pointer set to nil. Yeesh. But it’s OK.
Instead, we’ll set message to the value we want, and in the viewWillAppear: method, we’ll
set the label based on the value in message.

24594ch09.indd 261 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views262

Why are we using viewWillAppear: to do our updating instead of using viewDidLoad,
as we’ve done in the past? The problem is that viewDidLoad gets called only the first time
the controller’s view is loaded. But in our case, we are reusing the DisclosureDetail
Controller’s view. No matter which fine Pixar flick you pick, when you click the disclosure
button, the detail message appears in the same DisclosureDetailController view. If we
used viewDidLoad to manage our updates, that view would get updated only the very first
time the DisclosureDetailController view appeared. When we picked our second fine
Pixar flick, we’d still see the detail message from the first fine Pixar flick (try saying that ten
times fast). Not good. Since viewWillAppear: gets called every time a view is about to be
drawn, we’ll be fine using it for our updating.

Add the following code to DisclosureDetailController.m:

#import "DisclosureDetailController.h"

@implementation DisclosureDetailController
@synthesize label;
@synthesize message;
- (void)viewWillAppear:(BOOL)animated {
 label.text = message;
 [super viewWillAppear:animated];
}
- (void)viewDidUnload {
 self.label = nil;
 self.message = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [label release];
 [message release];
 [super dealloc];
}
@end

That’s all pretty straightforward, right? OK, let’s go create the nib to go along with this file.
Be sure you’ve saved your source changes.

Select the Resources folder in Xcode, and press ⌘N to create another new file. This time,
select User Interface on the left pane and View XIB from the upper-right. Give this nib file the
name DisclosureDetail.xib.

Let’s set up the nib first. Double-click DisclosureDetail.xib in Xcode to open the file in Inter-
face Builder. Once it’s open, single-click File’s Owner, and press ⌘4 to bring up the identity
inspector. Change the underlying class to DisclosureDetailController. Now control-drag from
the File’s Owner icon to the View icon, and select the view outlet to reestablish the link from
the controller to its view that was broken when we changed its class.

24594ch09.indd 262 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 263

Drag a Label from the library, and place it on the View window. Resize it so that it takes up
most of the width of the view, using the blue guide lines to place it correctly, and then use
the attributes inspector to change the text alignment to centered. Control-drag from File’s
Owner to the label, and select the label outlet. Save, close the nib, and head back to Xcode.

For this example, our list is just going to show a number of rows from an array, so we
will declare an NSArray named list. We also need to declare an instance variable to
hold one instance of our child controller, which will point to an instance of the
DisclosureDetailController class we just built. We could allocate a new instance
of that controller class every time the user taps a detail disclosure button, but it’s
more efficient to create one and then keep reusing it. Make the following changes to
DisclosureButtonController.h:

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import "SecondLevelViewController.h"
@class DisclosureDetailController;

@interface DisclosureButtonController : NSObject {
@interface DisclosureButtonController : SecondLevelViewController {
 NSArray *list;
 DisclosureDetailController *childController;
}
@property (nonatomic, retain) NSArray *list;
@end

Notice that we didn’t declare a property for the childController. We are using this
instance variable internally in our class and don’t want to expose it to others, so we don’t
advertise its existence by declaring a property.

Now, we get to the juicy part. Type the following changes into DisclosureButtonController.m.
We’ll talk about what’s going on afterward.

#import "DisclosureButtonController.h"
#import "NavAppDelegate.h"
#import "DisclosureDetailController.h"
@implementation DisclosureButtonController
@synthesize list;
- (void)viewDidLoad {
 NSArray *array = [[NSArray alloc] initWithObjects:@"Toy Story",
 @"A Bug's Life", @"Toy Story 2", @"Monsters, Inc.",
 @"Finding Nemo", @"The Incredibles", @"Cars",
 @"Ratatouille", @"WALL-E", @"Up", @"Toy Story 3",
 @"Cars 2", @"The Bear and the Bow", @"Newt", nil];
 self.list = array;
 [array release];
 [super viewDidLoad];

24594ch09.indd 263 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views264

}
- (void)viewDidUnload {
 self.list = nil;
 [childController release];
 childController = nil;
}
- (void)dealloc {
 [list release];
 [childController release];
 [super dealloc];
}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [list count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString * DisclosureButtonCellIdentifier =
 @"DisclosureButtonCellIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 DisclosureButtonCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier: DisclosureButtonCellIdentifier] autorelease];
 }
 NSUInteger row = [indexPath row];
 NSString *rowString = [list objectAtIndex:row];
 cell.textLabel.text = rowString;
 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
 [rowString release];
 return cell;
}
#pragma mark -
#pragma mark Table Delegate Methods
- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 @"Hey, do you see the disclosure button?"
 message:@"If you're trying to drill down, touch that instead"
 delegate:nil
 cancelButtonTitle:@"Won't happen again"

24594ch09.indd 264 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 265

 otherButtonTitles:nil];
 [alert show];
 [alert release];
}
- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath {
 if (childController == nil)
 childController = [[DisclosureDetailController alloc]
 initWithNibName:@"DisclosureDetail" bundle:nil];

 childController.title = @"Disclosure Button Pressed";
 NSUInteger row = [indexPath row];

 NSString *selectedMovie = [list objectAtIndex:row];
 NSString *detailMessage = [[NSString alloc]
 initWithFormat:@"You pressed the disclosure button for %@.",
 selectedMovie];
 childController.message = detailMessage;
 childController.title = selectedMovie;
 [detailMessage release];
 [self.navigationController pushViewController:childController
 animated:YES];
}
@end

By now, you should be fairly comfortable with everything up to and including the three
datasource methods we just added. Let’s look at our two new delegate methods.

The first method, tableView:didSelectRowAtIndexPath:, which gets called when the row
is selected, puts up a polite little alert telling the user to tap the disclosure button instead of
selecting the row. If the user actually taps the detail disclosure button, the last of our new
delegate methods, tableView:accessoryButtonTappedForRowWithIndexPath:, is called.
Let’s look at this one a little more closely.

The first thing we do here is check the childController instance variable to see if it’s nil.
If it is, we have not yet allocated and initialized a new instance of DetailDisclosure
Controller, so we do that next.

 if (childController == nil)
 childController = [[DisclosureDetailController alloc]
 initWithNibName:@"DisclosureDetail" bundle:nil];

This gives us a new controller that we can push onto the navigation stack, just as we did
 earlier in FirstLevelViewController. Before we push it onto the stack, though, we need
to give it some text to display.

 childController.title = @"Disclosure Button Pressed";

24594ch09.indd 265 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views266

In this case, we set message to reflect the row whose disclosure button was tapped. We also
set the new view’s title based on the selected row.

 NSUInteger row = [indexPath row];

 NSString *selectedMovie = [list objectAtIndex:row];
 NSString *detailMessage = [[NSString alloc]
 initWithFormat:@"You pressed the disclosure button for %@.",
 selectedMovie];
 childController.message = detailMessage;
 childController.title = selectedMovie;
 [detailMessage release];

Then, finally, we push the detail view controller onto the navigation stack.

 [self.navigationController pushViewController:childController
 animated:YES];

And, with that, our first second-level controller is done, as is our detail controller. The
only remaining task is to create an instance of our second level controller and add it to
 FirstLevelViewController’s controllers.

Single-click FirstLevelViewController.m, and insert the following code into the viewDidLoad
method:

- (void)viewDidLoad {
 self.title = @"First Level";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 // Disclosure Button
 DisclosureButtonController *disclosureButtonController =
 [[DisclosureButtonController alloc]
 initWithStyle:UITableViewStylePlain];
 disclosureButtonController.title = @"Disclosure Buttons";
 disclosureButtonController.rowImage = [UIImage
 imageNamed:@"disclosureButtonControllerIcon.png"];
 [array addObject:disclosureButtonController];
 [disclosureButtonController release];

 self.controllers = array;
 [array release];
 [super viewDidLoad];
}

All that we’re doing is creating a new instance of DisclosureButtonController. We specify
UITableViewStylePlain to indicate that we want an indexed table, not a grouped table.
Next, we set the title and the image to one of the .png files we had you add to your project,

24594ch09.indd 266 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 267

add the controller to the array, and release the controller. Up at the top of the file, you’ll need
to add one line of code to import the header class for our new file. Insert this line right above
the @implementation declaration:

#import "DisclosureButtonController.h"

Save everything, and try building. If everything went as planned, your project should com-
pile and then launch in the simulator. When it comes up, there should be just a single row
(see Figure 9-12).

If you touch the one row, it will take you down to the table view we just implemented (see
Figure 9-13).

Notice that the title that we set for our controller is now displayed in the navigation bar, and
the title of the view controller we were previously at (First Level) is contained in a navigation
button. Tapping that button will take the user back up to the first level. Select any row in this
table, and you will get a gentle reminder that the detail disclosure button is there for drilling
down (see Figure 9-14).

Figure 9-12. Our application
after adding the first of six
second-level controllers

Figure 9-13. The Disclosure
Buttons view

Figure 9-14. Selecting the row
does not drill down when there
is a detail disclosure button
 visible.

24594ch09.indd 267 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views268

If you touch the detail disclosure button itself, you drill
down into another view. The new view (see Figure 9-15)
shows information that we passed into it. Even though this
is a simple example, the same basic technique is used any-
time you show a detail view.

Notice that when we drill down to the detail view, the title
again changes, as does the back button, which now takes us
to the previous view instead of the root view. That finishes
up the first view controller. Do you see now how the design
Apple used here with the navigation controller makes it
possible to build your application in small chunks? That’s
pretty cool, isn’t it?

Our Second Subcontroller:
The Checklist
The next second-level view we’re going to implement is
another table view, but this time, we’re going to use the
accessory icon to let the user select one and only one item from the list. We’ll use the acces-
sory icon to place a checkmark next to the currently selected row, and we’ll change the
selection when the user touches another row.

Since this view is a table view and it has no detail view, we don’t need a new nib, but we do
need to create another subclass of SecondLevelViewController. Select the Classes folder
in the Groups & Files pane in Xcode, and then press ⌘N or select New File. . . from the File
menu. Select Cocoa Touch Class, and then select Objective-C class and NSObject for Subclass
of. Click the Next button, and when prompted for a name, type CheckListController.m, and
make sure that the header file is created as well.

To present a checklist, we’re going to need a way to keep track of which row is currently
selected. We’ll declare an NSIndexPath property to track the last row selected. Single-click
CheckListController.h, and add the following code:

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import "SecondLevelViewController.h"

@interface CheckListController : NSObject {
@interface CheckListController : SecondLevelViewController {
 NSArray *list;
 NSIndexPath *lastIndexPath;
}

Figure 9-15. The detail view

24594ch09.indd 268 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 269

@property (nonatomic, retain) NSArray *list;
@property (nonatomic, retain) NSIndexPath * lastIndexPath;
@end

Then switch over CheckListController.m and add the following code:

#import "CheckListController.h"

@implementation CheckListController
@synthesize list;
@synthesize lastIndexPath;
- (void)viewDidLoad {

 NSArray *array = [[NSArray alloc] initWithObjects:@"Who Hash",
 @"Bubba Gump Shrimp Étouffée", @"Who Pudding", @"Scooby Snacks",
 @"Everlasting Gobstopper", @"Green Eggs and Ham", @"Soylent Green",
 @"Hard Tack", @"Lembas Bread", @"Roast Beast", @"Blancmange", nil];
 self.list = array;
 [array release];

 [super viewDidLoad];
}
- (void)viewDidUnload {
 self.list = nil;
 self.lastIndexPath = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [list release];
 [lastIndexPath release];
 [super dealloc];
}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [list count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CheckMarkCellIdentifier = @"CheckMarkCellIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 CheckMarkCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault

24594ch09.indd 269 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views270

 reuseIdentifier:CheckMarkCellIdentifier] autorelease];
 }
 NSUInteger row = [indexPath row];
 NSUInteger oldRow = [lastIndexPath row];
 cell.textLabel.text = [list objectAtIndex:row];
 cell.accessoryType = (row == oldRow && lastIndexPath != nil) ?
 UITableViewCellAccessoryCheckmark : UITableViewCellAccessoryNone;

 return cell;
}
#pragma mark -
#pragma mark Table Delegate Methods
- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 int newRow = [indexPath row];
 int oldRow = (lastIndexPath != nil) ? [lastIndexPath row] : -1;

 if (newRow != oldRow) {
 UITableViewCell *newCell = [tableView cellForRowAtIndexPath:
 indexPath];
 newCell.accessoryType = UITableViewCellAccessoryCheckmark;

 UITableViewCell *oldCell = [tableView cellForRowAtIndexPath:
 lastIndexPath];
 oldCell.accessoryType = UITableViewCellAccessoryNone;
 lastIndexPath = indexPath;
 }

 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}
@end

Look first at the tableView:cellForRowAtIndexPath: method, because there are a few
new things in there worth noticing. The first several lines should be familiar to you:

 static NSString *CheckMarkCellIdentifier = @"CheckMarkCellIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 CheckMarkCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CheckMarkCellIdentifier] autorelease];
 }

24594ch09.indd 270 6/23/09 11:45:28 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 271

Here’s where things get interesting, though. First, we extract the row from this cell and from
the current selection:

 NSUInteger row = [indexPath row];
 NSUInteger oldRow = [lastIndexPath row];

We grab the value for this row from our array and assign it to the cell’s title:

 cell.textLabel.text = [list objectAtIndex:row];

Then, we set the accessory to show either a checkmark or nothing, depending on whether
the two rows are the same. In other words, if the row the table is requesting a cell for is the
currently selected row, we set the accessory icon to be a checkmark; otherwise, we set it to
be nothing. Notice that we also check lastIndexPath to make sure it’s not nil. We do this
because a nil lastIndexPath indicates no selection. However, calling the row method on a
nil object will return a 0, which is a valid row, but we don’t want to put a checkmark on row
0 when, in reality, there is no selection.

 cell.accessoryType = (row == oldRow && lastIndexPath != nil) ?
 UITableViewCellAccessoryCheckmark : UITableViewCellAccessoryNone;

After that, we just release the string we declared and return the cell.

 [rowTitle release];
 return cell;

Now skip down to the last method. You’ve seen the tableView:didSelectRowAtIndexPath:
method before, but we’re doing something new here. We grab not only the row that was just
selected but also the row that was previously selected.

 int newRow = [indexPath row];
 int oldRow = [lastIndexPath row];

We do this so if the new row and the old row are the same, we don’t bother making any
changes:

 if (newRow != oldRow) {

Next, we grab the cell that was just selected and assign a checkmark as its accessory icon:

 UITableViewCell *newCell = [tableView
 cellForRowAtIndexPath:indexPath];
 newCell.accessoryType = UITableViewCellAccessoryCheckmark;

24594ch09.indd 271 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views272

We then grab the previously selected cell, and we set its accessory icon to none:

 UITableViewCell *oldCell = [tableView cellForRowAtIndexPath:
 lastIndexPath];
 oldCell.accessoryType = UITableViewCellAccessoryNone;

After that, we store the index path that was just selected in lastIndexPath, so we’ll have it
next time a row is selected:

 lastIndexPath = indexPath;
 }

When we’re all done, we tell the table view to deselect the row that was just selected,
because we don’t want the row to stay highlighted. We’ve already marked the row with a
checkmark; leaving it blue would just be a distraction.

 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

Next, we just need to add an instance of this controller to FirstLevelViewController’s
controllers array. We do that by adding the following code to the viewDidLoad method in
FirstLevelViewController.m:

- (void)viewDidLoad {
 self.title = @"First Level";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 // Disclosure Button
 DisclosureButtonController *disclosureButtonController =
 [[DisclosureButtonController alloc]
 initWithStyle:UITableViewStylePlain];
 disclosureButtonController.title = @"Disclosure Buttons";
 disclosureButtonController.rowImage = [UIImage imageNamed:
 @"disclosureButtonControllerIcon.png"];
 [array addObject:disclosureButtonController];
 [disclosureButtonController release];

 // Check List
 CheckListController *checkListController = [[CheckListController alloc]
 initWithStyle:UITableViewStylePlain];
 checkListController.title = @"Check One";
 checkListController.rowImage = [UIImage imageNamed:
 @"checkmarkControllerIcon.png"];
 [array addObject:checkListController];
 [checkListController release];

24594ch09.indd 272 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 273

 self.controllers = array;
 [array release];
 [super viewDidLoad];
}

Finally, you’ll need to import the new header file, so add this line just after all the other
#import statements, toward the top of the file:

#import "CheckListController.h"

Well, what are you waiting for? Save everything, compile, and run. If everything went
smoothly, the application launched again in the simulator, and there was much rejoicing.
This time there will be two rows (see Figure 9-16).

If you touch the Check One row, it will take you down to the view controller we just
implemented (see Figure 9-17). When it first comes up, no rows will be selected and no
checkmarks will be visible. If you tap a row, a checkmark will appear. If you then tap a
 different row, the checkmark will switch to the new row. Huzzah!

Figure 9-16. Two second-level
controllers, two rows. What a
coincidence!

Figure 9-17. The checklist view.
Note that only a single item can
be checked at a time. Soylent
Green, anyone?

24594ch09.indd 273 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views274

Our Third Subcontroller: Controls on
Table Rows
In the previous chapter, we showed you how to add subviews to a table view cell to custom-
ize its appearance, but we didn’t put any active controls into the content view, only labels.
It’s time to try adding controls to a table view cell. In our example, we’ll add a button to each
row, but the same technique will work with most controls. We’ll add the control to the acces-
sory pane this time, which means that when tapping the accessory pane, the user will tap
the button, similar to the way they would tap a disclosure button.

To add another row to our root view’s table, we need another controller. You know the
drill: select the Classes folder in the Groups & Files pane in Xcode, and then press ⌘N or
select New File. . . from the File menu. Select Cocoa Touch Class, select Objective-C class,
and select Objective-C class and NSObject for Subclass of. When prompted for a name, type
RowControlsController.m, and make sure the checkbox for creating the header file is checked.
Just as with the last section, this controller can be completely implemented with a single
table view; no nib file is necessary.

Single-click RowControlsController.h, and add the following code:

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import "SecondLevelViewController.h"

@interface RowControlsController : NSObject {
@interface RowControlsController : SecondLevelViewController {
 NSArray *list;
}
@property (nonatomic, retain) NSArray *list;
- (IBAction)buttonTapped:(id)sender;
@end

Not much there, huh? We change the parent class, create an array to hold our table data,
then we define a property for that array, and declare an action method that will get called
when the row buttons are pressed.

NOTE
Strictly speaking, we don’t need to make this method an action method, since we won’t be triggering it
from controls in a nib file. Since it is an action method and will be called by a control, however, it’s still a
good idea to use the IBAction keyword.

24594ch09.indd 274 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 275

Switch over to RowControlsController.m, and make the following changes:

#import "RowControlsController.h"

@implementation RowControlsController
@synthesize list;
- (IBAction)buttonTapped:(id)sender
{
 UIButton *senderButton = (UIButton *)sender;
 UITableViewCell *buttonCell =
 (UITableViewCell *)[senderButton superview];
 NSUInteger buttonRow = [[self.tableView
 indexPathForCell:buttonCell] row];
 NSString *buttonTitle = [list objectAtIndex:buttonRow];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"You tapped the button"
 message:[NSString stringWithFormat:
 @"You tapped the button for %@", buttonTitle]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}
- (void)viewDidLoad {
 NSArray *array = [[NSArray alloc] initWithObjects:@"R2-D2",
 @"C3PO", @"Tik-Tok", @"Robby", @"Rosie", @"Uniblab",
 @"Bender", @"Marvin", @"Lt. Commander Data",
 @"Evil Brother Lore", @"Optimus Prime", @"Tobor", @"HAL",
 @"Orgasmatron", nil];
 self.list = array;
 [array release];
 [super viewDidLoad];
}
- (void)viewDidUnload {
 self.list = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [list release];
 [super dealloc];
}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [list count];
}

24594ch09.indd 275 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views276

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *ControlRowIdentifier = @"ControlRowIdentifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:ControlRowIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:ControlRowIdentifier] autorelease];
 UIImage *buttonUpImage = [UIImage imageNamed:@"button_up.png"];
 UIImage *buttonDownImage = [UIImage imageNamed:@"button_down.png"];
 UIButton *button = [UIButton buttonWithType:UIButtonTypeCustom];
 button.frame = CGRectMake(0.0, 0.0, buttonUpImage.size.width,
 buttonUpImage.size.height);
 [button setBackgroundImage:buttonUpImage
 forState:UIControlStateNormal];
 [button setBackgroundImage:buttonDownImage
 forState:UIControlStateHighlighted];
 [button setTitle:@"Tap" forState:UIControlStateNormal];
 [button addTarget:self action:@selector(buttonTapped:)
 forControlEvents:UIControlEventTouchUpInside];
 cell.accessoryView = button;
 }
 NSUInteger row = [indexPath row];
 NSString *rowTitle = [list objectAtIndex:row];
 cell.textLabel.text = rowTitle;

 return cell;
}
#pragma mark -
#pragma mark Table Delegate Methods
- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger row = [indexPath row];
 NSString *rowTitle = [list objectAtIndex:row];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"You tapped the row."
 message:[NSString
 stringWithFormat:@"You tapped %@.", rowTitle]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

24594ch09.indd 276 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 277

 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}
@end

Let’s look first at our new action method. The first thing we do is declare a new UIButton
instance and set it to sender. This is just so we don’t have to cast sender multiple times
throughout our method:

 UIButton *senderButton = (UIButton *)sender;

Next, we get the button’s superview, which is the table view cell for the row it’s in, and we
use that to determine the row that was pressed and to retrieve the title for that row:

 UITableViewCell *buttonCell =
 (UITableViewCell *)[senderButton superview];
 NSUInteger buttonRow = [[self.tableView
 indexPathForCell:buttonCell] row];
 NSString *buttonTitle = [list objectAtIndex:buttonRow];

Then we show an alert, telling the user that they pressed the button:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"You tapped the button"
 message:[NSString stringWithFormat:
 @"You tapped the button for %@", buttonTitle]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

Everything from there to tableView:cellForRowAtIndexPath: should be familiar to you,
so skip down to that method, which is where we set up the table view cell with the button.
The method starts as usual. We declare an identifier and then use it to request a reusable
cell:

 static NSString *ControlRowIdentifier = @"ControlRowIdentifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:ControlRowIdentifier];

If there are no reusable cells, we create one:

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:ControlRowIdentifier] autorelease];

24594ch09.indd 277 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views278

To create the button, we’re going to load in two of the images that were in the images folder
you imported earlier. One will represent the button in the normal state, the other will repre-
sent the button in its highlighted state or, in other words, when the button is being tapped:

 UIImage *buttonUpImage = [UIImage imageNamed:@"button_up.png"];
 UIImage *buttonDownImage = [UIImage imageNamed:@"button_down.png"];

Next, we create a button. Because the buttonType property of UIButton is declared read-
only, we have to create the button using the factory method buttonWithType:. We can’t
create it using alloc and init, because we wouldn’t be able to change the button’s type to
UIButtonTypeCustom, which we need to do in order to use the custom button images:

 UIButton *button = [UIButton buttonWithType:UIButtonTypeCustom];

Next, we set the button’s size to match the images, assign the images for the two states, and
give the button a title:

 button.frame = CGRectMake(0.0, 0.0, buttonUpImage.size.width,
 buttonUpImage.size.height);
 [button setBackgroundImage:buttonUpImage
 forState:UIControlStateNormal];
 [button setBackgroundImage:buttonDownImage
 forState:UIControlStateHighlighted];
 [button setTitle:@"Tap" forState:UIControlStateNormal];

Finally, we tell the button to call our action method on the Touch Up Inside event and assign
it to the cell’s accessory view:

 [button addTarget:self action:@selector(buttonTapped:)
 forControlEvents:UIControlEventTouchUpInside];
 cell.accessoryView = button;

Everything else in the method is just like we’ve done it in the past.

The last method we implemented is tableView:didSelectRowAtIndexPath:, which, as
you know by now, is the delegate method that gets called after the user selects a row. All we
do here is find out which row was selected and grab the appropriate title from our array:

 NSUInteger row = [indexPath row];
 NSString *rowTitle = [list objectAtIndex:row];

Then we create an another alert to inform the user that they tapped the row, but not the
button:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"You tapped the row."
 message:[NSString
 stringWithFormat:@"You tapped %@.", rowTitle]

24594ch09.indd 278 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 279

 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

Now, all we have to do is add this controller to the array in FirstLevelViewController.
Single-click FirstLevelViewController.m, and add the following code to viewDidLoad:

- (void)viewDidLoad {
 self.title = @"Root Level";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 // Disclosure Button
 DisclosureButtonController *disclosureButtonController =
 [[DisclosureButtonController alloc]
 initWithStyle:UITableViewStylePlain];
 disclosureButtonController.title = @"Disclosure Buttons";
 disclosureButtonController.rowImage = [UIImage
 imageNamed:@"disclosureButtonControllerIcon.png"];
 [array addObject:disclosureButtonController];
 [disclosureButtonController release];

 // Check List
 CheckListController *checkListController = [[CheckListController alloc]
 initWithStyle:UITableViewStylePlain];
 checkListController.title = @"Check One";
 checkListController.rowImage = [UIImage
 imageNamed:@"checkmarkControllerIcon.png"];
 [array addObject:checkListController];
 [checkListController release];

 // Table Row Controls
 RowControlsController *rowControlsController =
 [[RowControlsController alloc]
 initWithStyle:UITableViewStylePlain];
 rowControlsController.title = @"Row Controls";
 rowControlsController.rowImage = [UIImage imageNamed:
 @"rowControlsIcon.png"];
 [array addObject:rowControlsController];
 [rowControlsController release];

 self.controllers = array;
 [array release];
 [super viewDidLoad];
}

24594ch09.indd 279 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views280

In order for this code to compile, we have to also import the header file for the RowControls
Controller class, so add the following line of code just before the @implementation line in
the same file:

#import "RowControlsController.h"

Save everything, and compile it. This time, assuming everything went OK, you’ll get yet
another row when your application launches (see Figure 9-18).

If you tap this new row, it will take you down to a new list where every row has a button
control on the right side of the row. Tapping either the button or the row will show an alert
telling you which one you tapped (Figure 9-19).

Tapping a row anywhere but on its switch will display an alert telling you whether the switch
for that row is turned on or off. At this point, you should be getting pretty comfortable with
how this all works, so let’s try a slightly more difficult case, shall we? Let’s look at how to
allow the user to reorder the rows in a table.

Figure 9-18. The row controls
controller added to the root
level controller

Figure 9-19. The table with
 buttons in the accessory view

24594ch09.indd 280 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 281

Our Fourth Subcontroller: Moveable Rows
How you doing? Hanging in there? This chapter is very long, and you’ve already accom-
plished a lot. Why not take a break, and grab a Fresca and a Pastel de Belém? We’ll do the
same. When you’re refreshed and ready to move on, we’ll build another second-level view
controller and add it to our application.

Editing Mode
Moving and deleting rows, as well as inserting rows at a specific spot in the table are all tasks
that can be implemented fairly easily. All three are done by turning on something called
editing mode, which is done using the setEditing:animated: method on the table view.
This method takes two Booleans. The first indicates whether you are turning on or off edit-
ing mode, and the second indicates whether the table should animate the transition. If you
set editing to the mode it’s already in (in other words, turning it on when it’s already on or off
when it’s already off), the transition will not be animated regardless of what you specify in
the second parameter.

In the follow-on controller, we’ll again use editing mode, this time to allow the user to delete
rows from the table. Allowing row reordering is the easiest of the editing mode tasks, so we’ll
tackle it first.

Once editing mode is turned on, a number of new delegate methods come into play. The
table view uses them to ask if a certain row can be moved or edited and again to notify you
if the user actually does move or edit a specific row. It sounds more complex than it is. Let’s
see it in action.

Creating a New Second-Level Controller
Because we don’t have to display a detail view, the Move Me view controller can be imple-
mented without a nib and with just a single controller class. So, select the Classes folder
in the Groups & Files pane in Xcode, and then press ⌘N or select New File… from the File
menu. Select Cocoa Touch Class, select Objective-C class and NSObject for Subclass of. When
prompted for a name, type MoveMeController.m, and create the header file as well.

In our header file, we need two things. First, we need a mutable array to hold our data and
keep track of the order of the rows. It has to be mutable because we need to be able to
move items around as we get notified of moves. We also need an action method to toggle
edit mode on and off. The action method will be called by a navigation bar button that we
will create. Single-click MoveMeController.h, and make the following changes:

24594ch09.indd 281 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views282

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import "SecondLevelViewController.h"

@interface MoveMeController : NSObject {
@interface MoveMeController : SecondLevelViewController {
 NSMutableArray *list;
}
@property (nonatomic, retain) NSMutableArray *list;
-(IBAction)toggleMove;
@end

Now, switch over to MoveMeController.m and add the following code:

#import "MoveMeController.h"

@implementation MoveMeController
@synthesize list;
-(IBAction)toggleMove{
 [self.tableView setEditing:!self.tableView.editing animated:YES];

 if (self.tableView.editing)
 [self.navigationItem.rightBarButtonItem setTitle:@"Done"];
 else
 [self.navigationItem.rightBarButtonItem setTitle:@"Move"];
}
- (void)dealloc {
 [list release];
 [super dealloc];
}
- (void)viewDidLoad {
 if (list == nil)
 {
 NSMutableArray *array = [[NSMutableArray alloc] initWithObjects:
 @"Eeny", @"Meeny", @"Miney", @"Moe", @"Catch", @"A",
 @"Tiger", @"By", @"The", @"Toe", nil];
 self.list = array;
 [array release];
 }

 UIBarButtonItem *moveButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Move"
 style:UIBarButtonItemStyleBordered
 target:self
 action:@selector(toggleMove)];
 self.navigationItem.rightBarButtonItem = moveButton;
 [moveButton release];
 [super viewDidLoad];

24594ch09.indd 282 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 283

}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [list count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *MoveMeCellIdentifier = @"MoveMeCellIdentifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:MoveMeCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:MoveMeCellIdentifier] autorelease];
 cell.showsReorderControl = YES;

 }
 NSUInteger row = [indexPath row];
 cell.textLabel.text = [list objectAtIndex:row];

 return cell;
}
- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 return UITableViewCellEditingStyleNone;
}
- (BOOL)tableView:(UITableView *)tableView
canMoveRowAtIndexPath:(NSIndexPath *)indexPath {
 return YES;
}
- (void)tableView:(UITableView *)tableView
moveRowAtIndexPath:(NSIndexPath *)fromIndexPath
 toIndexPath:(NSIndexPath *)toIndexPath {
 NSUInteger fromRow = [fromIndexPath row];
 NSUInteger toRow = [toIndexPath row];

 id object = [[list objectAtIndex:fromRow] retain];
 [list removeObjectAtIndex:fromRow];
 [list insertObject:object atIndex:toRow];
 [object release];
}
@end

24594ch09.indd 283 6/23/09 11:45:29 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views284

Let’s take this one step at a time. The first code we added was the implementation of our
action method:

-(IBAction)toggleMove{
 [self.tableView setEditing:!self.tableView.editing animated:YES];

 if (self.tableView.editing)
 [self.navigationItem.rightBarButtonItem setTitle:@"Done"];
 else
 [self.navigationItem.rightBarButtonItem setTitle:@"Move"];
}

All that we’re doing here is toggling edit mode and then setting the button’s title to an
appropriate value. Easy enough, right?

Then we have a standard dealloc method, but no viewDidUnload method. That’s inten-
tional. We have no outlets, and if we were to flush our list array, we would lose any
reordering that the user had done when the view gets flushed, which we don’t want.
Therefore, since we have nothing to do in the viewDidUnload method, we don’t bother to
override it.

The next method we touched is viewDidLoad. The first part of that method doesn’t do any-
thing you haven’t seen before. It checks to see if list is nil, and if it is (meaning this is the
first time this method has been called), it creates a mutable array, filled with values, so our
table has some data to show. After that, though, there is something new.

 UIBarButtonItem *moveButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Move"
 style:UIBarButtonItemStyleBordered
 target:self
 action:@selector(toggleMove)];
 self.navigationItem.rightBarButtonItem = moveButton;
 [moveButton release];

Here, we’re creating a button bar item, which is a button that will sit on the navigation bar.
We give it a title of Move and specify a constant, UIBarButtonItemStyleBordered, to indi-
cate that we want a standard bordered bar button. The last two arguments, target and
action, tell the button what to do when it is tapped. By passing self as the target and giv-
ing it a selector to the toggleMove method as the action, we are telling the button to call
our toggleMove method whenever the button is tapped. As a result, anytime the user taps
this button, editing mode will be toggled. After we create the button, we add it to the right
side of the navigation bar, and then release it.

Now, skip down to the tableView:cellForRowAtIndexPath: method we just added. Did
you notice this new line of code?

24594ch09.indd 284 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 285

 cell.showsReorderControl = YES;

Standard accessory icons can be specified by setting the accessoryType property of the
cell. But, the reorder control is not a standard accessory icon: it’s a special case that’s shown
only when the table is in edit mode. To enable the reorder control, we have to set a property
on the cell itself. Note, though, that setting this property to YES doesn’t actually display the
reorder control until the table gets put into edit mode. Everything else in this method is stuff
we’ve done before.

The next new method is short but important. In our table view, we want to be able to reor-
der the rows, but we don’t want the user to be able to delete or insert rows. As a result, we
implement the method tableView:editingStyleForRowAtIndexPath:. This method
allows the table view to ask if a specific row can be deleted or if a new row can be inserted at
a specific spot. By returning UITableViewCellEditingStyleNone for each row, we are indi-
cating that we don’t support inserts or deletes for any row.

Next comes the method tableView:canMoveRowAtIndexPath:. This method gets called
for each row, and it gives you the chance to disallow the movement of specific rows. If you
return NO from this method for any row, the reorder control will not be shown for that row,
and the user will be unable to move it from its current position. We want to allow full reor-
dering, so we just return YES for every row.

The last method, tableView:moveRowAtIndexPath:fromIndexPath:, is the method that
will actually get called when the user moves a row. The two parameters besides tableView
are both NSIndexPath instances that identify the row that was moved and the row’s new
position. The table view has already moved the rows in the table so the user is seeing the
right thing, but we need to update our data model to keep the two in sync and avoid caus-
ing display problems.

First, we retrieve the row that needs to be moved. Then, we retrieve the row’s new position.

 NSUInteger fromRow = [fromIndexPath row];
 NSUInteger toRow = [toIndexPath row];

We now need to remove the specified object from the array and reinsert it at its new loca-
tion. But before we do that, we retrieve a pointer to the about-to-be-moved object and
retain it so that the object doesn’t get released when we remove it from the array. If the array
is the only object that has retained the object we’re removing (and in our case, it is), remov-
ing the selected object from the array will cause its retain count to drop to 0, meaning it will
probably disappear on us. By retaining it first, we prevent that from happening.

 id object = [[list objectAtIndex:fromRow] retain];
 [list removeObjectAtIndex:fromRow];

24594ch09.indd 285 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views286

After we’ve removed it, we need to reinsert it into the specified new location:

 [list insertObject:object atIndex:toRow];

And, finally, because we’ve retained it, we need to release it to avoid leaking memory:

 [object release];

Well, there you have it. We’ve implemented a table that allows reordering of rows. Now, we
just need to add an instance of this new class to FirstLevelViewController’s array of con-
trollers. You’re probably comfortable doing this by now, but we’ll walk you through it just to
keep you company.

In FirstLevelViewController.m, import the new view’s header file by adding the following line
of code just before the @implementation declaration:

#import "MoveMeController.h"

Now, add the following code to the viewDidLoad method in the same file:

- (void)viewDidLoad {
 self.title = @"First Level";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 // Disclosure Button
 DisclosureButtonController *disclosureButtonController =
 [[DisclosureButtonController alloc]
 initWithStyle:UITableViewStylePlain];
 disclosureButtonController.title = @"Disclosure Buttons";
 disclosureButtonController.rowImage = [UIImage
 imageNamed:@"disclosureButtonControllerIcon.png"];
 [array addObject:disclosureButtonController];
 [disclosureButtonController release];

 // Check List
 CheckListController *checkListController = [[CheckListController alloc]
 initWithStyle:UITableViewStylePlain];
 checkListController.title = @"Check One";
 checkListController.rowImage = [UIImage
 imageNamed:@"checkmarkControllerIcon.png"];
 [array addObject:checkListController];
 [checkListController release];

 // Table Row Controls
 RowControlsController *rowControlsController =
 [[RowControlsController alloc]
 initWithStyle:UITableViewStylePlain];

24594ch09.indd 286 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 287

 rowControlsController.title = @"Row Controls";
 rowControlsController.rowImage = [UIImage imageNamed:
 @"rowControlsIcon.png"];
 [array addObject:rowControlsController];
 [rowControlsController release];

 // Move Me
 MoveMeController *moveMeController = [[MoveMeController alloc]
 initWithStyle:UITableViewStylePlain];
 moveMeController.title = @"Move Me";
 moveMeController.rowImage = [UIImage imageNamed:@"moveMeIcon.png"];
 [array addObject:moveMeController];
 [moveMeController release];

 self.controllers = array;
 [array release];
 [super viewDidLoad];
}

OK, let’s go ahead and compile this bad boy and see what
shakes out. If everything went smoothly, our application
will launch in the simulator with (count ’em) four rows in the
root-level table. If you click the new one, called Move Me, it’ll
take you down to a list of rows. If you want to try moving
the rows, click the Move button, and the reorder controls
should appear (see Figure 9-20).

If you tap in the reorder control and then drag, the row
should move as you drag, as in Figure 9-6. Move the row as
you like. The row should settle into its new position nicely.
You can even navigate back up to the top level and come
back down, and your rows will be right where you left them.
If you quit and come back in, they will get restored, but
don’t worry; in a few chapters, we’ll teach you how to save
and restore data.

NOTE
If you find you have a bit of trouble making contact with the move control, don’t panic. If you are very
careful to actually click the pixels of the move control, you should be able to experience moving goodness.
The difficulty here is that you are interfacing with the simulator using a single-pixel hot-spot cursor. If
you downloaded the application onto your iPhone or iPod touch (which you can’t do until you are accepted
into one of Apple’s for-pay iPhone Developer Programs), you’d be using your big, fat fingers, which, pre-
sumably, are several pixels wide and will have no trouble making contact with the move control.

Figure 9-20. The Move Me view
controller when you first drill
down

24594ch09.indd 287 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views288

In case you hadn’t noticed, this chapter is a bit of a marathon. If you’re feeling a little over-
whelmed, this is probably a good time to take a break. There’s a lot of stuff in this chapter
to absorb, but it’s important. The vast majority of iPhone applications will use table views
in some respect. When you’re ready to move on, we’ll look at another use of edit mode. This
time, we’ll let the user delete our precious rows. Gasp!

Our Fifth Subcontroller: Deletable Rows
Letting users delete rows isn’t really significantly harder than letting them move rows. Let’s
take a look at that process. Instead of creating an array from a hard-coded list of objects,
we’re going to load a property list file this time, just to save some typing. You can grab the
file called computers.plist out of the 09 Nav folder in the projects archive that accompanies
this book and add it to the Resources folder of your Xcode project.

Select the Classes folder in the Groups & Files pane in Xcode, and then press ⌘N or select
New File… from the File menu. Select Cocoa Touch Class, select Objective-C class and
 NSObject for Subclass of. When prompted for a name, this time type DeleteMeController.m.

Once you’ve got your new files, let’s start by editing DeleteMeController.h. The changes we’re
going to make there should look familiar, as they’re nearly identical to the ones we made in
the last view controller we built. Go ahead and make these changes now:

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import "SecondLevelViewController.h"

@interface DeleteMeController : NSObject {
@interface DeleteMeController : SecondLevelViewController {
 NSMutableArray *list;
}
@property (nonatomic, retain) NSMutableArray *list;
-(IBAction)toggleEdit:(id)sender;
@end

No surprises here, right? We’re changing the superclass from NSObject to Second
LevelViewController. After that, we declare a mutable array to hold our data and an
action method to toggle edit mode. In the last controller we built, we used edit mode to
let the users reorder rows. In this version, edit mode will be used to let them delete rows.
You can actually combine both in the same table if you like. We separated them so the con-
cepts would be a bit easier to follow, but the delete and reorder operations do play nicely
together. A row that can be reordered will display the reorder icon anytime that the table is
in edit mode. When you tap the red circular icon on the left side of the row (see Figure 9-7),
the Delete button will pop up, obscuring the reorder icon but only temporarily.

24594ch09.indd 288 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 289

Switch over to DeleteMeController.m, and add the following code:

#import "DeleteMeController.h"

@implementation DeleteMeController
@synthesize list;
-(IBAction)toggleEdit:(id)sender {
 [self.tableView setEditing:!self.tableView.editing animated:YES];

 if (self.tableView.editing)
 [self.navigationItem.rightBarButtonItem setTitle:@"Done"];
 else
 [self.navigationItem.rightBarButtonItem setTitle:@"Delete"];
}
- (void)viewDidLoad {
 if (list == nil)
 {
 NSString *path = [[NSBundle mainBundle]
 pathForResource:@"computers" ofType:@"plist"];
 NSMutableArray *array = [[NSMutableArray alloc]
 initWithContentsOfFile:path];
 self.list = array;
 [array release];
 }
 UIBarButtonItem *editButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Delete"
 style:UIBarButtonItemStyleBordered
 target:self
 action:@selector(toggleEdit:)];
 self.navigationItem.rightBarButtonItem = editButton;
 [editButton release];

 [super viewDidLoad];
}
- (void)dealloc {
 [list release];
 [super dealloc];
}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [list count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

24594ch09.indd 289 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views290

 static NSString *DeleteMeCellIdentifier = @"DeleteMeCellIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 DeleteMeCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:DeleteMeCellIdentifier] autorelease];
 }
 NSInteger row = [indexPath row];
 cell.textLabel.text = [self.list objectAtIndex:row];
 return cell;
}

#pragma mark -
#pragma mark Table View Data Source Methods
- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath {

 NSUInteger row = [indexPath row];
 [self.list removeObjectAtIndex:row];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
}
@end

Let’s look at what we did. The new action method, toggleEdit:, is pretty much the same
as our last version. It sets edit mode to on if it’s currently off and vice versa, and then sets
the button’s title as appropriate. The viewDidLoad method is also similar to the one from
the previous view controller and, again, we have no viewDidUnload method because we
have no outlets and we want to preserve changes made to our mutable array in edit mode.
The only difference is that we’re loading our array from a property list rather than feeding it
a hard-coded list of strings. The property list we’re using is a flat array of strings containing
a variety of computer model names that might be a bit familiar. We also assign a different
name to the edit button this time, naming it Delete to make the button’s effect obvious to
the user.

The two data source methods contain nothing new, but the last method in the class is some-
thing you’ve never seen before, so let’s take a closer look at it:

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {

24594ch09.indd 290 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 291

This method is called by the table view when the user has made an edit, which means a
delete or an insert. The first argument is the table view on which a row was edited. The
 second parameter, editingStyle, is a constant that tells us what kind of edit just
happened. Currently, there are three editing styles defined. One of them is UITable
ViewCellEditingStyleNone, which we used in the last section to indicate that a row can’t
be edited. The other two styles are UITableViewCellEditingStyleDelete, which is the
default option, and UITableViewCellEditingStyleInsert. The option UITableView
CellEditingStyleNone will never be passed into this method, because it is used to indicate
that editing is not allowed for this row.

We ignore this parameter, because the default editing style for rows is the delete style, so we
know that every time this method is called, it will be requesting a delete. You can use this
parameter to allow both inserts and deletes within a single table. The other editing style,
UITableViewCellEditingStyleInsert, is generally used when you need to let the user
insert rows at a specific spot in a list. In a list whose order is maintained by the system, such
as an alphabetical list of names, the user will usually tap a toolbar or navigation bar button
to ask the system to create a new object in a detail view. Once the user is done specifying
the new object, the system will place in the appropriate row. We won’t be covering the use
of inserts, but the insert functionality works in fundamentally the same way as the delete
we are about to implement. The only difference is that, instead of deleting the specified row
from your data model, you have to create a new object and insert it at the specified spot.

The last parameter, indexPath, tells us which row is being edited. For a delete, this index
path represents the row to be deleted. For an insert, it represents the index where the new
row should be inserted.

In our method, we first retrieve the row that is being edited from indexPath:

 NSUInteger row = [indexPath row];

Then, we remove the object from the mutable array we created earlier:

 [self.list removeObjectAtIndex:row];

Finally, we tell the table to delete the row, specifying the constant UITableViewRow
AnimationFade, which represents one type of animation the iPhone will use when remov-
ing rows. There are several other options in addition to this one, which causes the row to
fade away. You can look up the UITableViewRowAnimation in Xcode’s document browser to
see what other animations are available.

 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
}

24594ch09.indd 291 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views292

And that’s all she wrote, folks. That’s the whole enchilada for this class, so let’s add an
instance of it to our root view controller and try it out. In FirstLevelViewController.m, we first
need to import our new controller class’s header file, so add the following line of code right
before the @implementation declaration:

#import "DeleteMeController.h"

Now, add the following code to the viewDidLoad method:

- (void)viewDidLoad {
 self.title = @"First Level";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 // Disclosure Button
 DisclosureButtonController *disclosureButtonController =
 [[DisclosureButtonController alloc]
 initWithStyle:UITableViewStylePlain];
 disclosureButtonController.title = @"Disclosure Buttons";
 disclosureButtonController.rowImage = [UIImage imageNamed:
 @"disclosureButtonControllerIcon.png"];
 [array addObject:disclosureButtonController];
 [disclosureButtonController release];

 // Check List
 CheckListController *checkListController = [[CheckListController alloc]
 initWithStyle:UITableViewStylePlain];
 checkListController.title = @"Check One";
 checkListController.rowImage = [UIImage imageNamed:
 @"checkmarkControllerIcon.png"];
 [array addObject:checkListController];
 [checkListController release];

 // Table Row Controls
 RowControlsController *rowControlsController =
 [[RowControlsController alloc]
 initWithStyle:UITableViewStylePlain];
 rowControlsController.title = @"Row Controls";
 rowControlsController.rowImage = [UIImage imageNamed:
 @"rowControlsIcon.png"];
 [array addObject:rowControlsController];
 [rowControlsController release];

 // Move Me
 MoveMeController *moveMeController = [[MoveMeController alloc]
 initWithStyle:UITableViewStylePlain];
 moveMeController.title = @"Move Me";
 moveMeController.rowImage = [UIImage imageNamed:@"moveMeIcon.png"];

24594ch09.indd 292 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 293

 [array addObject:moveMeController];
 [moveMeController release];

 // Delete Me
 DeleteMeController *deleteMeController = [[DeleteMeController alloc]
 initWithStyle:UITableViewStylePlain];
 deleteMeController.title = @"Delete Me";
 deleteMeController.rowImage = [UIImage imageNamed:@"deleteMeIcon.png"];
 [array addObject:deleteMeController];
 [deleteMeController release];

 self.controllers = array;
 [array release];
 [super viewDidLoad];
}

Save everything, compile, and let her rip. When the simulator comes up, the root level
will now have—can you guess?—five rows. If you select the new Delete Me row, you’ll be
presented with a list of computer models (see Figure 9-21). How many of these have you
owned?

Notice that we again have a button on the right side of the navigation bar, this time labeled
Delete. If we tap that, the table enters edit mode, which looks like Figure 9-22.

Figure 9-21. The delete me
view when it first launches

Figure 9-22. The delete me
view in edit mode

24594ch09.indd 293 6/23/09 11:45:30 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views294

Next to each editable row is now a little icon that looks a little like a “Do Not Enter”
street sign. If you tap the icon, it rotates sideways, and a button labeled Delete appears
(see Figure 9-7). Tapping that button will cause its row to be deleted, both from the underly-
ing model as well as from the table, using the animation style we specified.

And when you implement edit mode to allow deletes, you get additional functionality for
free. Swipe your finger horizontally across a row. Look at that! The delete button comes up
for just that row, just like in the Mail application.

Our Sixth Subcontroller:
An Editable Detail Pane
We’re coming around the bend, now, and the finish line is
in sight, albeit still a little ways in the distance. If you’re still
with us, give yourself a pat on the back, or have someone do
it for you. This is a long, tough chapter.

The next concept we’re going to explore is how to imple-
ment a reusable editable detail view. You may notice as you
look through the various applications that come on your
iPhone, that many of those applications, including the Con-
tacts application, implement their detail views as a grouped
table (see Figure 9-23).

Let’s look at how to do this now. Before we begin, we need
some data to show, and we need more than just a list of
strings. In the last two chapters, when we needed more
complex data, such as with the multiline table in Chapter
7 or the ZIP codes picker in Chapter 6, we used an NSAr-
ray to hold a bunch of NSDictionary instances filled with
our data. That works fine and is very flexible, but it’s a little
hard to work with. For this table’s data, let’s create a custom
Objective-C data object to hold the individual instances that
will be displayed in the list.

Creating the Data Model Object
The property list we’ll be using in this section of the application contains data about the
US presidents: each president’s name, his party, the year he took office, and the year he left
office. Let’s create the class to hold that data.

Once again, single-click the Classes folder in Xcode to select it, and then press ⌘N to bring
up the new file assistant. Select Cocoa Touch Class from the left pane, and then select

Figure 9-23. An example of a
grouped table view being used
to present an editable table
view

24594ch09.indd 294 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 295

Objective-C class and NSObject for Subclass of. Name this class President.m, and make sure the
checkbox for creating the header file is checked.

Click President.h, and make the following changes:

#define kPresidentNumberKey @"President"
#define kPresidentNameKey @"Name"
#define kPresidentFromKey @"FromYear"
#define kPresidentToKey @"ToYear"
#define kPresidentPartyKey @"Party"

#import <Foundation/Foundation.h>

@interface President : NSObject {
@interface President : NSObject <NSCoding> {
 int number;
 NSString *name;
 NSString *fromYear;
 NSString *toYear;
 NSString *party;
}
@property int number;
@property (nonatomic, retain) NSString *name;
@property (nonatomic, retain) NSString *fromYear;
@property (nonatomic, retain) NSString *toYear;
@property (nonatomic, retain) NSString *party;
@end

The five constants will be used to identify the fields when they are read from the file system.
Conforming this class to the NSCoding protocol is what allows this object to be written to
and created from files. The rest of the new stuff we’ve added to this header file is there to
implement the properties needed to hold our data. Switch over to President.m, and make
these changes:

#import "President.h"

@implementation President
@synthesize number;
@synthesize name;
@synthesize fromYear;
@synthesize toYear;
@synthesize party;

-(void)dealloc{
 [name release];
 [fromYear release];
 [toYear release];

24594ch09.indd 295 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views296

 [party release];
 [super dealloc];
}
#pragma mark -
#pragma mark NSCoding
- (void)encodeWithCoder:(NSCoder *)coder {
 [coder encodeInt:self.number forKey:kPresidentNumberKey];
 [coder encodeObject:self.name forKey:kPresidentNameKey];
 [coder encodeObject:self.fromYear forKey:kPresidentFromKey];
 [coder encodeObject:self.toYear forKey:kPresidentToKey];
 [coder encodeObject:self.party forKey:kPresidentPartyKey];
}
- (id)initWithCoder:(NSCoder *)coder {
 if (self = [super init]) {
 self.number = [coder decodeIntForKey:kPresidentNumberKey];
 self.name = [coder decodeObjectForKey:kPresidentNameKey];
 self.fromYear = [coder decodeObjectForKey:kPresidentFromKey];
 self.toYear = [coder decodeObjectForKey:kPresidentToKey];
 self.party = [coder decodeObjectForKey:kPresidentPartyKey];
 }
 return self;
}
@end

Don’t worry too much about the encodeWithCoder: and initWithCoder: methods.
We’ll be covering those in more detail in Chapter 11. All you need to know for now is that
these two methods are part of the NSCoding protocol which can be used to save objects
to disk and load them back in. encodeWithCoder: encodes our object to be saved;
 initWithCoder: is used to create new objects from the saved file. These methods will
allow us to create President objects from a property list archive file. Everything else in
this class should be fairly self-explanatory.

We’ve provided you with a property list file that contains data for all the US presidents and
can be used to create new instances of the President object we just wrote. We will be
using this in the next section, so you won’t have to type in a whole bunch of data. Grab the
Presidents.plist file from the 09 Nav folder in the projects archive, and add it to the Resources
folder of your project.

Now, we’re ready to write our two controller classes.

Creating the Controllers
For this part of the application, we’re going to need two new controllers, one that will show
the list to be edited and another one to view and edit the details of the item selected in that
list. Since both of these view controllers will be based on tables, we won’t need to create

24594ch09.indd 296 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 297

any nib files, but we will need two separate controller classes. Let’s create the files for both
classes now and then implement them.

Select the Classes folder in the Groups & Files pane in Xcode, and then press ⌘N or select
New File… from the File menu. Select Cocoa Touch Class, select Objective-C class and
NSObject for Subclass of. For a name, type PresidentsViewController.m, and make sure to
have it create the header file also. Repeat the same process a second time using the name
PresidentDetailController.m.

NOTE
In case you were wondering, PresidentDetailController is singular (as opposed to Presidents
DetailController) because it deals with detail on a single president. Yes, we actually had a fistfight
about that little detail, but one intense paintball session later, we are friends again.

Let’s create the view controller that shows the list of presidents first. Single-click Presidents
ViewController.h, and make the following changes:

#import <Foundation/Foundation.h>
#import "SecondLevelViewController.h"

@interface PresidentsViewController : NSObject {
@interface PresidentsViewController : SecondLevelViewController {
 NSMutableArray *list;
}
@property (nonatomic, retain) NSMutableArray *list;
@end

Then switch over to PresidentsViewController.m and make the following changes:

#import "PresidentsViewController.h"
#import "PresidentDetailController.h"
#import "President.h"

@implementation PresidentsViewController
@synthesize list;
- (void)viewDidLoad {
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Presidents"
 ofType:@"plist"];

 NSData *data;
 NSKeyedUnarchiver *unarchiver;

 data = [[NSData alloc] initWithContentsOfFile:path];
 unarchiver = [[NSKeyedUnarchiver alloc] initForReadingWithData:data];

24594ch09.indd 297 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views298

 NSMutableArray *array = [unarchiver decodeObjectForKey:@"Presidents"];
 self.list = array;
 [unarchiver finishDecoding];
 [unarchiver release];
 [data release];

 [super viewDidLoad];
}
- (void)viewWillAppear:(BOOL)animated {
 [self.tableView reloadData];
 [super viewWillAppear:animated];
}
- (void)dealloc {
 [list release];
 [super dealloc];
}
#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [list count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *PresidentListCellIdentifier =
 @"PresidentListCellIdentifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:PresidentListCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:PresidentListCellIdentifier] autorelease];
 }
 NSUInteger row = [indexPath row];
 President *thePres = [self.list objectAtIndex:row];
 cell.textLabel.text = thePres.name;
 cell.detailTextLabel.text = [NSString stringWithFormat:@"%@ - %@",
 thePres.fromYear, thePres.toYear];
 return cell;
}
#pragma mark -
#pragma mark Table Delegate Methods
- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

24594ch09.indd 298 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 299

 NSUInteger row = [indexPath row];
 President *prez = [self.list objectAtIndex:row];

 PresidentDetailController *childController =
 [[PresidentDetailController alloc]
 initWithStyle:UITableViewStyleGrouped];

 childController.title = prez.name;
 childController.president = prez;

 [self.navigationController pushViewController:childController
 animated:YES];
 [childController release];
}
@end

Most of the code you just entered is stuff you’ve seen before. One new thing is in the
 viewDidLoad method, where we used an NSKeyedUnarchiver method to create an array
full of instances of the President class from our property list file. It’s not important that you
understand exactly what’s going on there as long as you understand that we’re loading an
array full of Presidents.

First, we get the path for the property file:

 NSString *path = [[NSBundle mainBundle] pathForResource:@"Presidents"
 ofType:@"plist"];

Next, we declare a data object that will temporarily hold the encoded archive and an
NSKeyedUnarchiver, which we’ll use to actually restore the objects from the archive:

 NSData *data;
 NSKeyedUnarchiver *unarchiver;

We load the property list into data, and then use data to initialize unarchiver:

 data = [[NSData alloc] initWithContentsOfFile:path];
 unarchiver = [[NSKeyedUnarchiver alloc] initForReadingWithData:data];

Now, we decode an array from the archive. The key @"Presidents" is the same value that
was used to create this archive:

 NSMutableArray *array = [unarchiver decodeObjectForKey:@"Presidents"];

We then assign this decoded array to our list property, finalize the decoding process, clean
up our memory, and make our call to super:

24594ch09.indd 299 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views300

 self.list = array;
 [unarchiver finishDecoding];
 [unarchiver release];
 [data release];

 [super viewDidLoad];

We also need to tell our tableView to reload its data in the viewWillAppear: method. If
the user changes something in the detail view, we need to make sure that the parent view
shows that new data. Rather than testing for a change, we force the parent view to reload its
data and redraw each time it appears.

- (void)viewWillAppear:(BOOL)animated {
 [self.tableView reloadData];
 [super viewWillAppear:animated];
}

There’s one other change from the last time we created a detail view. It’s in the last method,
tableView:didSelectRowAtIndexPath:. When we created the Disclosure Button view, we
reused the same child controller every time and just changed its values. That’s relatively easy
to do when you’ve got a nib with outlets. When you’re using a table view to implement your
detail view, the methods that fire the first time and the ones that fire subsequent times are
different. Also, the table cells that are used to display and change the data get reused. The
combination of these two details means your code can get very, very complex if you’re try-
ing to make it behave exactly the same way every time and to make sure that you are able to
keep track of all the changes. As a result, it’s well worth the little bit of additional overhead
from allocating and releasing new controller objects to keep down the complexity of our
controller class.

Let’s look at the detail controller, because that’s where the bulk of the new stuff is this time.
This new controller gets pushed onto the navigation stack when the user taps one of the
rows in the PresidentsViewController table to allow data entry for that president. Let’s
implement the detail view now.

Creating the Detail View Controller
Please fasten your seatbelts, ladies and gentlemen; we’re expecting a little turbulence ahead.
Air sickness bags are located in the seat pocket in front of you.

This next controller is just a little on the gnarly side, but we’ll get through it safely. Please
remain seated. Single-click PresidentDetailController.h, and make the following changes:

#import <Foundation/Foundation.h>

@class President;

24594ch09.indd 300 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 301

#define kNumberOfEditableRows 4
#define kNameRowIndex 0
#define kFromYearRowIndex 1
#define kToYearRowIndex 2
#define kPartyIndex 3

#define kLabelTag 4096

@interface PresidentDetailController : NSObject {
@interface PresidentDetailController : UITableViewController
 <UITextFieldDelegate> {
 President *president;
 NSArray *fieldLabels;
 NSMutableDictionary *tempValues;
 UITextField *textFieldBeingEdited;
}
@property (nonatomic, retain) President *president;
@property (nonatomic, retain) NSArray *fieldLabels;
@property (nonatomic, retain) NSMutableDictionary *tempValues;
@property (nonatomic, retain) UITextField *textFieldBeingEdited;

- (IBAction)cancel:(id)sender;
- (IBAction)save:(id)sender;
- (IBAction)textFieldDone:(id)sender;
@end

Well, now, what the heck is going on here? This is new. In all our previous table view exam-
ples, each table row corresponded to a single row in an array. The array provided all the data
the table needed. So, for example, our table of Pixar movies was driven by an array of strings,
each string containing the title of a single Pixar movie.

Our presidents example features two different tables. One is a list of presidents, by name,
and is driven by an array with one president per row. The second table implements a detail
view of a selected president. Since this table has a fixed number of fields, instead of using an
array to supply data to this table, we define a series of constants we will use in our table data
source methods. These constants define the number of editable fields, along with the index
value for the row that will hold each of those properties.

There’s also a constant called kLabelTag that we’ll use to retrieve the UILabel from the
cell so that we can set the label correctly for the row. Shouldn’t there be another tag for the
UITextField? Normally, yes, but we will need to use the tag property of the text field for
another purpose. We’ll have to use another slightly less convenient mechanism to retrieve
the text field when we need to set its value. Don’t worry if that seems confusing; everything
should become clear when we actually write the code.

24594ch09.indd 301 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views302

You should notice that this class conforms to three protocols this time: the table data-
source and delegate protocols and a new one, UITextFieldDelegate. By conforming to
 UITextFieldDelegate, we’ll be notified when a user makes a change to a text field so that
we can save the field’s value. This application doesn’t have enough rows for the table to ever
have to scroll, but in many applications, a text field could scroll off the screen and, perhaps,
be deallocated or reused. If the text field is lost, the value stored in it is lost, so saving the
value when the user makes a change is the way to go.

Down a little further, we declare a pointer to a President object. This is the object that
we will actually be editing using this view, and it’s set in the tableView:didSelectRowAt
IndexPath: of our parent controller based on the row selected there. When the user taps
the row for Thomas Jefferson, the PresidentsViewController will create an instance
of the PresidentDetailController. The PresidentsViewController will then set the
 president property of that instance to the object that represents Thomas Jefferson, and
push the newly created instance of PresidentDetailController onto the navigation
stack.

The second instance variable, fieldLabels, is an array that holds a list of labels that cor-
respond to the constants kNameRowIndex, kFromYearRowIndex, kToYearRowIndex, and
kPartyIndex. For example, kNameRowIndex is defined as 0. So, the label for the row that
shows the president’s name is stored at index 0 in the fieldLabels array. You’ll see this in
action when we get to it in code in a minute.

Next, we define a mutable dictionary, tempValues, that will hold values from fields the user
changes. We don’t want to make the changes directly to the president object because
if the user selects the Cancel button, we need the original data so we can go back to it.
Instead, what we will do is store any value that gets changed in our new mutable dictionary,
tempValues. So if, for example, the user edited the Name: field and then tapped the Party:
field to start editing that one, the PresidentDetailController would get notified at that
time that the Name: field had been edited, because it is the text field’s delegate.

When the PresidentDetailController gets notified of the change, it stores the new value
in the dictionary using the name of the property it represents as the key. In our example,
we’d store a change to the Name: field using the key @"name". That way, regardless of
whether users save or cancel, we have the data we need to handle it. If the users cancel, we
just discard this dictionary, and if they save, we copy the changed values over to president.

Next up is a pointer to a UITextField, named textFieldBeingEdited. The moment the
users click in one of the PresidentDetailController text fields, textFieldBeingEdited
is set to point to that text field. Why do we need this text field pointer? We have an interest-
ing timing problem, and textFieldBeingEdited is the solution.

Users can take one of two basic paths to finish editing a text field. First, they can
touch another control or text field that becomes first responder. In this case, the text

24594ch09.indd 302 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 303

field that was being edited loses first responder status, and the delegate method
 textFieldDidEndEditing: is called. You’ll see textFieldDidEndEditing: in a
few pages when we enter the code for PresidentDetailController.m. In this case,
textFieldDidEndEditing: takes the new value of the text field and stores it in
 tempValues.

The second way the users can finish editing a text field is by tapping the Save or Cancel
 button. When they do this, the save: or cancel: action method gets called. In both meth-
ods, the PresidentDetailController view must be popped off the stack, since both the
save and cancel actions end the editing session. This presents a problem. The save: and
cancel: action methods do not have a simple way of finding the just-edited text field to
save the data.

textFieldDidEndEditing:, the delegate method we discussed in the previous para-
graph, does have access to the text field, since the text field is passed in as a parameter.
That’s where textFieldBeingEdited comes in. The cancel: action method ignores
 textFieldBeingEdited, since the user did not want to save changes, so the changes can
be lost with no problem. But the save: method does care about those changes and needs a
way to save them.

Since textFieldBeingEdited is maintained as a pointer to the current text field being
edited, save: uses that pointer to copy the value in the text field to tempValues. Now,
save: can do its job and pop the PresidentDetailController view off the stack, which
will bring our list of presidents back to the top of the stack. When the view is popped off
the stack, the text field and its value are lost. That’s OK; we’ve saved that sucker already, so
all is cool.

Single-click PresidentDetailController.m, and make the following changes:

#import "PresidentDetailController.h"
#import "President.h"

@implementation PresidentDetailController
@synthesize president;
@synthesize fieldLabels;
@synthesize tempValues;
@synthesize textFieldBeingEdited;

-(IBAction)cancel:(id)sender {
 [self.navigationController popViewControllerAnimated:YES];
}
- (IBAction)save:(id)sender {

 if (textFieldBeingEdited != nil) {
 NSNumber *tagAsNum= [[NSNumber alloc]
 initWithInt:textFieldBeingEdited.tag];

24594ch09.indd 303 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views304

 [tempValues setObject:textFieldBeingEdited.text forKey: tagAsNum];
 [tagAsNum release];

 }
 for (NSNumber *key in [tempValues allKeys]) {
 switch ([key intValue]) {
 case kNameRowIndex:
 president.name = [tempValues objectForKey:key];
 break;
 case kFromYearRowIndex:
 president.fromYear = [tempValues objectForKey:key];
 break;
 case kToYearRowIndex:
 president.toYear = [tempValues objectForKey:key];
 break;
 case kPartyIndex:
 president.party = [tempValues objectForKey:key];
 default:
 break;
 }
 }
 [self.navigationController popViewControllerAnimated:YES];

 NSArray *allControllers = self.navigationController.viewControllers;
 UITableViewController *parent = [allControllers lastObject];
 [parent.tableView reloadData];
}
-(IBAction)textFieldDone:(id)sender {
 [sender resignFirstResponder];
}
#pragma mark -
- (void)viewDidLoad {
 NSArray *array = [[NSArray alloc] initWithObjects:@"Name:", @"From:",
 @"To:", @"Party:", nil];
 self.fieldLabels = array;
 [array release];

 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Cancel"
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(cancel:)];
 self.navigationItem.leftBarButtonItem = cancelButton;
 [cancelButton release];

 UIBarButtonItem *saveButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Save"

24594ch09.indd 304 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 305

 style:UIBarButtonItemStyleDone
 target:self
 action:@selector(save:)];
 self.navigationItem.rightBarButtonItem = saveButton;
 [saveButton release];

 NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
 self.tempValues = dict;
 [dict release];
 [super viewDidLoad];
}
- (void)dealloc {
 [textFieldBeingEdited release];
 [tempValues release];
 [president release];
 [fieldLabels release];

 [super dealloc];
}

#pragma mark -
#pragma mark Table Data Source Methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return kNumberOfEditableRows;
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *PresidentCellIdentifier = @"PresidentCellIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 PresidentCellIdentifier];
 if (cell == nil) {

 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:PresidentCellIdentifier] autorelease];
 UILabel *label = [[UILabel alloc] initWithFrame:
 CGRectMake(10, 10, 75, 25)];
 label.textAlignment = UITextAlignmentRight;
 label.tag = kLabelTag;
 label.font = [UIFont boldSystemFontOfSize:14];
 [cell.contentView addSubview:label];
 [label release];

 UITextField *textField = [[UITextField alloc] initWithFrame:
 CGRectMake(90, 12, 200, 25)];

24594ch09.indd 305 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views306

 textField.clearsOnBeginEditing = NO;
 [textField setDelegate:self];
 textField.returnKeyType = UIReturnKeyDone;
 [textField addTarget:self
 action:@selector(textFieldDone:)
 forControlEvents:UIControlEventEditingDidEndOnExit];
 [cell.contentView addSubview:textField];
 }
 NSUInteger row = [indexPath row];

 UILabel *label = (UILabel *)[cell viewWithTag:kLabelTag];
 UITextField *textField = nil;
 for (UIView *oneView in cell.contentView.subviews) {
 if ([oneView isMemberOfClass:[UITextField class]])
 textField = (UITextField *)oneView;
 }
 label.text = [fieldLabels objectAtIndex:row];
 NSNumber *rowAsNum = [[NSNumber alloc] initWithInt:row];
 switch (row) {
 case kNameRowIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.name;
 break;
 case kFromYearRowIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.fromYear;
 break;
 case kToYearRowIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.toYear;
 break;
 case kPartyIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.party;
 default:
 break;
 }
 if (textFieldBeingEdited == textField)
 textFieldBeingEdited = nil;

24594ch09.indd 306 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 307

 textField.tag = row;
 [rowAsNum release];
 return cell;
}
#pragma mark -
#pragma mark Table Delegate Methods
- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 return nil;
}
#pragma mark Text Field Delegate Methods
- (void)textFieldDidBeginEditing:(UITextField *)textField {
 self.textFieldBeingEdited = textField;
}
- (void)textFieldDidEndEditing:(UITextField *)textField {
 NSNumber *tagAsNum = [[NSNumber alloc] initWithInt:textField.tag];
 [tempValues setObject:textField.text forKey:tagAsNum];
 [tagAsNum release];
}
@end

The first new method is our cancel: action method. This gets called, appropriately enough,
when the user taps the Cancel button. When the Cancel button is tapped, the current view
will be popped off the stack, and the previous view will rise to the top of the stack. Ordinar-
ily, that job would be handled by the navigation controller, but a little later in the code, we’re
going to manually set the left bar button item. This means we’re replacing the button that
the navigation controller uses for that purpose. We can pop the current view off the stack by
getting a reference to the navigation controller and telling it to do just that.

-(IBAction)cancel:(id)sender {
 NavAppDelegate *delegate =
 [[UIApplication sharedApplication] delegate];
 [delegate.navController popViewControllerAnimated:YES];

}

The next method is save:, which gets called when the user taps the Save button. When the
Save button is tapped, the values that the user has entered have already been stored in the
tempValues dictionary, unless the keyboard is still visible and the cursor is still in one of the
text fields. In that case, there may well be changes to that text field that have not yet been
put into our tempValues dictionary. To account for this, the first thing the save: method
does is check to see if there is a text field that is currently being edited. Whenever the user
starts editing a text field, we store a pointer to that text field in textFieldBeingEdited. If
textFieldBeingEdited is not nil, we grab its value and stick it in tempValues:

24594ch09.indd 307 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views308

 if (textFieldBeingEdited != nil) {
 NSNumber *tfKey= [[NSNumber alloc] initWithInt:
 textFieldBeingEdited.tag];
 [tempValues setObject:textFieldBeingEdited.text forKey:tfKey];
 [tagAsNum release];
 }

We then use fast enumeration to step through all the key values in the dictionary, using
the row numbers as keys. We can’t store raw datatypes like int in an NSDictionary, so we
 create NSNumber objects based on the row number and use those instead. We use intValue
to turn the number represented by key back into an int, and then use a switch on that
value using the constants we defined earlier and assign the appropriate value from the
 tempValues array back to the designated field on our president object.

 for (NSNumber *key in [tempValues allKeys]) {
 switch ([key intValue]) {
 case kNameRowIndex:
 president.name = [tempValues objectForKey:key];
 break;
 case kFromYearRowIndex:
 president.fromYear = [tempValues objectForKey:key];
 break;
 case kToYearRowIndex:
 president.toYear = [tempValues objectForKey:key];
 break;
 case kPartyIndex:
 president.party = [tempValues objectForKey:key];
 default:
 break;
 }
 }

Now, our president object has been updated, and we need to move up a level in the
view hierarchy. Tapping a Save or Done button on a detail view should generally bring
the user back up to the previous level, so we grab our application delegate and use its
 navController outlet to pop ourselves off of the navigation stack, sending the user back
up to the list of presidents:

 NavAppDelegate *delegate =
 [[UIApplication sharedApplication] delegate];
 [delegate.navController popViewControllerAnimated:YES];

There’s one other thing we have to do here, which is to tell our parent view’s table to reload
its data. Because one of the fields that the user can edit is the name field, which is displayed
in the PresidentsViewController table, if we don’t have that table reload its data, it will
continue to show the old value.

24594ch09.indd 308 6/23/09 11:45:31 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 309

 UINavigationController *navController = [delegate navController];
 NSArray *allControllers = navController.viewControllers;
 UITableViewController *parent = [allControllers lastObject];
 [parent.tableView reloadData];

The third action method will be called when the user taps the Done button on the keyboard.
Without this method, the keyboard won’t retract when the user taps Done. This approach
isn’t strictly necessary in our application, since the four rows that can be edited here fit in the
area above the keyboard. That said, you’ll need this method if you add a row or in a future
application that requires more screen real estate. It’s a good idea to keep the behavior con-
sistent from application to application even if doing so is not critical to your application’s
functionality.

-(IBAction)textFieldDone:(id)sender {
 [sender resignFirstResponder];
}

The viewDidLoad method doesn’t contain anything too surprising. We create the array of
field names and assign it the fieldLabels property.

 NSArray *array = [[NSArray alloc] initWithObjects:@"Name:",
 @"From:", @"To:", @"Party:", nil];
 self.fieldLabels = array;
 [array release];

Next, we create two buttons and add them to the navigation bar. We put the Cancel
button in the left bar button item spot, which supplants the navigation button put
there automatically. We put the Save button in the right spot and assign it the style
 UIBarButtonItemStyleDone. This style was specifically designed for this occasion, for a but-
ton users tap when they are happy with their changes and ready to leave the view. A button
with this style will be blue instead of gray and usually will carry a label of Save or Done.

 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Cancel"
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(cancel:)];
 self.navigationItem.leftBarButtonItem = cancelButton;
 [cancelButton release];

 UIBarButtonItem *saveButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Save"
 style:UIBarButtonItemStyleDone
 target:self
 action:@selector(save:)];
 self.navigationItem.rightBarButtonItem = saveButton;
 [saveButton release];

24594ch09.indd 309 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views310

Finally, we create a new mutable dictionary and assign it to tempValues so that we have a
place to stick the changed values. If we made the changes directly to the president object,
we’d have no easy way to roll back to the original data when the user tapped Cancel.

 NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
 self.tempValues = dict;
 [dict release];
 [super viewDidLoad];

We can skip over the dealloc method and the first data source method, as there are is noth-
ing new under the sun there. We do need to stop and chat about tableView:cellForRowAt
IndexPath:, however, because there are a few gotchas there. The first part of the method is
exactly like every other tableView:cellForRowAtIndexPath: method we’ve written.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *PresidentCellIdentifier = @"PresidentCellIdentifier";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 PresidentCellIdentifier];
 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero
 reuseIdentifier:PresidentCellIdentifier] autorelease];

When we create a new cell, we create a label, make it right-aligned and bold, and assign it
a tag so that we can retrieve it again later. Next, we add it to the cell’s contentView and
release it. It’s pretty straightforward:

 UILabel *label = [[UILabel alloc] initWithFrame:
 CGRectMake(10, 10, 75, 25)];
 label.textAlignment = UITextAlignmentRight;
 label.tag = kLabelTag;
 label.font = [UIFont boldSystemFontOfSize:14];
 [cell.contentView addSubview:label];
 [label release];

After that, we create a new text field. The user actually types in this field. We set it so it does
not clear the current value when editing so we don’t lose the existing data, and we set self
as the text field’s delegate. By setting the text field’s delegate to self, we can get notified
by the text field when certain events occur by implementing appropriate methods from
the UITextFieldDelegate protocol. As you’ll see in a moment, we’ve implemented two
text field delegate methods in this class. Those methods will get called by the text fields on
all rows when the user begins and ends editing the text they contain. We also set the key-
board’s return key type, which is how we specify the text for the key in the bottom-right of

24594ch09.indd 310 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 311

the keyboard. The default value is Return, but since we have only single-line fields, we want
the key to say Done instead, so we pass UIReturnKeyDone.

 UITextField *textField = [[UITextField alloc] initWithFrame:
 CGRectMake(90, 12, 200, 25)];
 textField.clearsOnBeginEditing = NO;
 [textField setDelegate:self];
 textField.returnKeyType = UIReturnKeyDone;

After that, we tell the text field to call our textFieldDone: method on the Did End on Exit
event. This is exactly the same thing as dragging from the Did End on Exit event in the con-
nections inspector in Interface Builder to File’s Owner and selecting an action method. Since
we don’t have a nib file, we have to do it programmatically, but the result is the same.

When we’re all done configuring the text field, we add it to the cell’s content view. Notice,
however, that we did not set a tag before we added it to that view.

 [textField addTarget:self
 action:@selector(textFieldDone:)
 forControlEvents:UIControlEventEditingDidEndOnExit];
 [cell.contentView addSubview:textField];
 }

At this point, we know that we’ve either got a brand new cell or a reused cell, but we don’t
know which. The first thing we do is figure out which row this darn cell is going to represent:

 NSUInteger row = [indexPath row];

Next, we need to get a reference to the label and the text field from inside this cell. The label
is easy; we just use the tag we assigned to it to retrieve it from cell:

UILabel *label = (UILabel *)[cell viewWithTag:kLabelTag];

The text field, however, isn’t going to be quite as easy, because we need the tag in order
to tell our text field delegates which text field is calling them. So we’re going to rely on the
fact that there’s only one text field that is a subview of our cell’s contentView. We’ll use fast
enumeration to work through all of its subviews, and when we find a text field, we assign it
to the pointer we declared a moment earlier. When the loop is done, the textField pointer
should be pointing to the one and only text field contained in this cell.

 UITextField *textField = nil;

 for (UIView *oneView in cell.contentView.subviews) {
 if ([oneView isMemberOfClass:[UITextField class]])
 textField = (UITextField *)oneView;
 }

24594ch09.indd 311 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views312

Now that we have pointers to both the label and the text field, we can assign them the cor-
rect values based on which field from the president object this row represents. Once again,
the label gets its value from the fieldLabels array:

 label.text = [fieldLabels objectAtIndex:row];

Assigning the value to the text field is not quite as easy. We have to first check to see if there
is a value in the tempValues dictionary corresponding to this row. If there is, we assign it
to the text field. If there isn’t any corresponding value in tempValues, we know there have
been no changes entered for this field, so we assign this field the corresponding value from
president.

 NSNumber *rowAsNum = [[NSNumber alloc] initWithInt:row];
 switch (row) {
 case kNameRowIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.name;
 break;
 case kFromYearRowIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.fromYear;
 break;
 case kToYearRowIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.toYear;
 break;
 case kPartyIndex:
 if ([[tempValues allKeys] containsObject:rowAsNum])
 textField.text = [tempValues objectForKey:rowAsNum];
 else
 textField.text = president.party;
 default:
 break;
 }

If the field we’re using is the one that is currently being edited, that’s an indication that
that the value we’re holding in textFieldBeingEdited is no longer valid, so we set
 textFieldBeingEdited to nil. If the text field did get released or reused, our text field
delegate would have been called, and the correct value would already be in the tempValues
dictionary.

24594ch09.indd 312 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 313

 if (textFieldBeingEdited == textField)
 textFieldBeingEdited = nil;

Next, we set the text field’s tag to the row it represents, which will allow us to know which
field is calling our text field delegate methods:

 textField.tag = row;

Finally, we release rowAsNum to be a good memory citizen and return the cell:

 [rowAsNum release];
 return cell;
}

We do implement one table delegate method this time, which is tableView:
willSelectRowAtIndexPath:. Remember, this method gets called before a row gets
selected and gives us a chance to disallow the row selection. In this view, we never want
a row to appear selected. We need to know that the user selected a row so we can place a
checkmark next to it, but we don’t want the row to actually be highlighted. Don’t worry. A
row doesn’t need to be selected for a text field on that row to be editable, so this method
just keeps the row from staying highlighted after it is touched.

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 return nil;
}

All that’s left now are the two text field delegate methods. The first one we implement,
 textFieldDidBeginEditing:, gets called whenever a text field for which we are the del-
egate becomes first responder. So, if the user taps a field and the keyboard pops up, we get
notified. In this method, we store a pointer to the field currently being edited so that we
have a way to get to the last changes made before the Save button was tapped.

(void)textFieldDidBeginEditing:(UITextField *)textField {
 self.textFieldBeingEdited = textField;
}

The last method we wrote gets called when the user stops editing a text field by tapping
a different text field or pressing the Done button or when another field became the first
responder, which will happen, for example, when the user navigates back up to the list of
presidents. Here, we save the value from that field in the tempValues dictionary so that we
will have them if the user taps the Save button to confirm the changes.

- (void)textFieldDidEndEditing:(UITextField *)textField {
 NSNumber *tagAsNum = [[NSNumber alloc] initWithInt:textField.tag];
 [tempValues setObject:textField.text forKey:tagAsNum];

24594ch09.indd 313 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views314

 [tagAsNum release];
}

And that’s it. We’re done with these two view controllers, so all we have to do is add an
instance of this class to the top-level view controller. You know how to do this by now.
 Single-click FirstLevelViewController.m.

First, import the header from the new second-level view by adding the following line of
code right before the @implementation declaration:

#import "PresidentsViewController.h"

And then add the following code to the viewDidLoad method:

- (void)viewDidLoad {
 self.title = @"Top Level";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 // Disclosure Button
 DisclosureButtonController *disclosureButtonController =
 [[DisclosureButtonController alloc]
 initWithStyle:UITableViewStylePlain];
 disclosureButtonController.title = @"Disclosure Buttons";
 disclosureButtonController.rowImage = [UIImage
 imageNamed:@"disclosureButtonControllerIcon.png"];
 [array addObject:disclosureButtonController];
 [disclosureButtonController release];

 // Check List
 CheckListController *checkListController = [[CheckListController alloc]
 initWithStyle:UITableViewStylePlain];
 checkListController.title = @"Check One";
 checkListController.rowImage = [UIImage
 imageNamed:@"checkmarkControllerIcon.png"];
 [array addObject:checkListController];
 [checkListController release];

 // Table Row Controls
 RowControlsController *rowControlsController =
 [[RowControlsController alloc]
 initWithStyle:UITableViewStylePlain];
 rowControlsController.title = @"Row Controls";
 rowControlsController.rowImage =
 [UIImage imageNamed:@"rowControlsIcon.png"];
 [array addObject:rowControlsController];
 [rowControlsController release];

24594ch09.indd 314 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 315

 // Move Me
 MoveMeController *moveMeController = [[MoveMeController alloc]
 initWithStyle:UITableViewStylePlain];
 moveMeController.title = @"Move Me";
 moveMeController.rowImage = [UIImage imageNamed:@"moveMeIcon.png"];
 [array addObject:moveMeController];
 [moveMeController release];

 // Delete Me
 DeleteMeController *deleteMeController = [[DeleteMeController alloc]
 initWithStyle:UITableViewStylePlain];
 deleteMeController.title = @"Delete Me";
 deleteMeController.rowImage = [UIImage imageNamed:@"deleteMeIcon.png"];
 [array addObject:deleteMeController];
 [deleteMeController release];

 // President View/Edit
 PresidentsViewController *presidentsViewController =
 [[PresidentsViewController alloc]
 initWithStyle:UITableViewStylePlain];
 presidentsViewController.title = @"Detail Edit";
 presidentsViewController.rowImage = [UIImage imageNamed:
 @"detailEditIcon.png"];
 [array addObject:presidentsViewController];
 [presidentsViewController release];

 self.controllers = array;
 [array release];
 [super viewDidLoad];
}

Save everything, sigh deeply, hold your breath, and then build that sucker. If everything is in
order, the simulator will launch, and a sixth and final row will appear, just like the one in Fig-
ure 9-2. If you click the new row, you’ll be taken to a list of US presidents (see Figure 9-24).

Tapping any of the rows will take you down to the detail view that we just built (see Figure
9-8), and you’ll be able to edit the values. If you select the Done button in the keyboard, the
keyboard should retract. Tap one of the editable values, and the keyboard will reappear.
Make some changes, and tap Cancel, and the application will pop back to the list of presi-
dents. If you revisit the president you just cancelled out of, your changes will be gone. On
the other hand, if you make some changes and tap Save, your changes will be reflected in
the parent table, and when you come back into the detail view, the new values will still be
there.

24594ch09.indd 315 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views316

Figure 9-24. Our sixth and final subcontroller
presents a list of US presidents. Tap one of
the presidents, and you’ll be taken to a
detail view (or a secret service agent will
wrestle you to the ground).

But There’s One More Thing. . .
There’s one more little bit of polish we need to add to make our application behave the way
it should. In the version we just built, the keyboard incorporates a Done button that, when
tapped, makes the keyboard retract. That behavior is proper if there are other controls on
the view that the user might need to get to. Since every row on this table view is a text field,
however, we need a slightly different solution. The keyboard should feature a Return button
instead of a Done button. When tapped, that button should take the user to the next row’s
text field.

In order to accomplish this, the first thing we need to do is replace the Done button
with a Return button. We can accomplish this by deleting a single line of code from
PresidentDetailController.m. In the tableView:cellForRowAtIndexPath: method, delete
the following line of code:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *PresidentCellIdentifier = @"PresidentCellIdentifier";

24594ch09.indd 316 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 317

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 PresidentCellIdentifier];
 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero
 reuseIdentifier:PresidentCellIdentifier] autorelease];
 UILabel *label = [[UILabel alloc] initWithFrame:
 CGRectMake(10, 10, 75, 25)];
 label.textAlignment = UITextAlignmentRight;
 label.tag = kLabelTag;
 label.font = [UIFont boldSystemFontOfSize:14];
 [cell.contentView addSubview:label];
 [label release];

 UITextField *textField = [[UITextField alloc] initWithFrame:
 CGRectMake(90, 12, 200, 25)];
 textField.clearsOnBeginEditing = NO;
 [textField setDelegate:self];
 textField.returnKeyType = UIReturnKeyDone;
 [textField addTarget:self
 action:@selector(textFieldDone:)
 forControlEvents:UIControlEventEditingDidEndOnExit];
 [cell.contentView addSubview:textField];

 }
 NSUInteger row = [indexPath row];
...

The next step isn’t quite as straightforward. In our textFieldDone: method, instead of sim-
ply telling sender to resign first responder status, we need to somehow figure out what the
next field should be and tell that field to become the first responder. Replace your current
version of textFieldDone: with this new version, and then we’ll chat about how it works:

-(IBAction)textFieldDone:(id)sender {
 UITableViewCell *cell =
 (UITableViewCell *)[[sender superview] superview];
 UITableView *table = (UITableView *)[cell superview];
 NSIndexPath *textFieldIndexPath = [table indexPathForCell:cell];
 NSUInteger row = [textFieldIndexPath row];
 row++;
 if (row >= kNumberOfEditableRows)
 row = 0;
 NSUInteger newIndex[] = {0, row};
 NSIndexPath *newPath = [[NSIndexPath alloc] initWithIndexes:newIndex
 length:2];
 UITableViewCell *nextCell = [self.tableView

24594ch09.indd 317 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views318

 cellForRowAtIndexPath:newPath];
 [newPath release];
 UITextField *nextField = nil;
 for (UIView *oneView in nextCell.contentView.subviews) {
 if ([oneView isMemberOfClass:[UITextField class]])
 nextField = (UITextField *)oneView;
 }
 [nextField becomeFirstResponder];
}

Unfortunately, cells don’t know what row they represent. The table view, however, does
know which row a given cell is currently representing. So, we get a reference to the table
view cell. We know that the text field that is triggering this action method is a subview of the
table cell view’s content view, so we just need to get sender’s superview’s superview (now
say that ten times fast).

If that sounded confusing, think of it this way. Sender, in this case, is the text field being
edited. Sender’s superview is the content view that groups the text field and its label.
 Sender’s superview’s superview is the cell that encompasses that content view.

 UITableViewCell *cell = (UITableViewCell *)[[(UIView *)sender
 superview]superview];

We also need access to the cell’s enclosing table view, which is easy enough, since it’s the
superview of the cell:

 UITableView *table = (UITableView *)[cell superview];

We then ask the table which row the cell represents. The response is an NSIndexPath, and
we get the row from that:

 NSIndexPath *textFieldIndexPath = [table indexPathForCell:cell];
 NSUInteger row = [textFieldIndexPath row];

Next, we increment row by one, which represents the next row in the table. If incrementing
the row number puts us beyond the last one, we reset row to 0:

 row++;
 if (row >= kNumberOfEditableRows)
 row = 0;

Then we build a new NSIndexPath to represent the next row, and use that index path to get
a reference to the cell currently representing the next row:

 NSUInteger newIndex[] = {0, row};
 NSIndexPath *newPath = [[NSIndexPath alloc] initWithIndexes:newIndex
 length:2];

24594ch09.indd 318 6/23/09 11:45:32 AM

Download at Boykma.Com

CHAPTER 9: Navigation Controllers and Table Views 319

 UITableViewCell *nextCell = [self.tableView
 cellForRowAtIndexPath:newPath];
 [newPath release];

For the text field, we’re already using tag for another purpose, so we have to loop through
the subviews of the cell’s content view to find the text field rather than using tag to retrieve
it:

 UITextField *nextField = nil;
 for (UIView *oneView in nextCell.contentView.subviews) {
 if ([oneView isMemberOfClass:[UITextField class]])
 nextField = (UITextField *)oneView;
 }

And finally, we can tell that new text field to become the first responder:

 [nextField becomeFirstResponder];

Now, compile and run, and when you drill down to the detail view, tapping the Return but-
ton will take you to the next field in the table, which will make entering data much easier for
your users.

Breaking the Tape
This chapter was a marathon, and if you’re still standing, you should feel pretty darn good
about yourself. Dwelling on these mystical table view and navigation controller objects is
important, because they are the backbone of a great many iPhone applications, and their
complexity can definitely get you into trouble if you don’t truly understand them.

As you start building your own tables, check back to this chapter and the previous one, and
don’t be afraid of Apple’s documentation, either. Table views are extraordinarily complex,
and we could never cover every conceivable permutation, but you should now have a very
good set of table view building blocks you can use as you design and build your own appli-
cations. As always, please do feel free to reuse this code in your own applications. It’s a gift
from us to you. Enjoy!

In the next chapter, we’re going to look at application settings, the mechanism the iPhone
uses to gather and store user preferences. Once you’ve completed your cooldown, drink
plenty of fluids, and proceed to the next chapter. Oh, and don’t forget to stretch.

24594ch09.indd 319 6/23/09 11:45:32 AM

Download at Boykma.Com

24594ch09.indd 320 6/23/09 11:45:32 AM

Download at Boykma.Com

Chapter 10

321

a

Application
Settings and
User Defaults

ll but the simplest computer programs today have a preferences window
where the user can set application-specific options. On Mac OS X, the
 Preferences… menu item is usually found in the application menu. Selecting
it brings up a window where the user can enter and change various options.
The iPhone has a dedicated application called Settings, which you no doubt
have played with any number of times. In this chapter, we’ll show you how to
add settings for your application to the Settings application, and we’ll show
you how to access those settings from within your application.

Getting to Know Your Settings Bundle
The Settings application (see Figure 10-1) lets the user enter and change pref-
erences for any application that has a settings bundle. A settings bundle is a
group of files built into an application that tells the Settings application what
preferences the application wishes to collect from the user.

Pick up your iPhone or iPod touch, and locate your Settings icon. You’ll find it
on the home screen. When you touch the icon, the Settings application will
launch. Ours is shown in Figure 10-2.

24594ch10.indd 321 6/24/09 10:35:29 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults322

Figure 10-1. The Settings application
icon is the third one down in the last
column. It may be in a different spot
on your iPhone or iPod touch, but it’s
always available.

Figure 10-2. The Settings application

The Settings application acts as a common user interface for the iPhone’s User Defaults
mechanism. User Defaults is the part of Application Preferences that stores and retrieves
preferences. User Defaults is implemented by the NSUserDefaults class. If you’ve done
Cocoa programming on the Mac, you’re probably already familiar with NSUserDefaults,
because it is the same class that is used to store and read preferences on the Mac. Your appli-
cations will use NSUserDefaults to read and store preference data using a key value, just as
you would access keyed data from an NSDictionary. The difference is that NSUserDefaults
data is persisted to the file system rather than stored in an object instance in memory.

In this chapter, we’re going to create an application, add and configure a settings bundle,
and then access and edit those preferences from within our application.

One nice thing about the Settings application is that you don’t have to design a user inter-
face for your preferences. You create a property list defining your application’s available
settings, and the Settings application creates the interface for you. There are limits to what
you can do with the Settings application, however. Any preference that the user might need
to change while your application is running should not be limited to the Settings application
because your user would be forced to quit your application to change those values.

24594ch10.indd 322 6/24/09 10:35:29 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 323

Immersive applications, such as games, generally should provide their own preferences view
so that the user doesn’t have to quit in order to make a change. Even utility and productivity
applications might, at times, have preferences that a user should be able to change without
leaving the application. We’ll also show you to how to collect preferences from the user right
in your application and store those in iPhone’s User Defaults.

The AppSettings Application
We’re going to build a simple application in this chapter. First, we’ll implement a settings
bundle so that when the user launches the Settings application, there will be an entry for
our application (see Figure 10-3).

If the user selects our application, it will drill down into a view that shows the preferences
relevant to our application. As you can see from Figure 10-4, the Settings application is using
text fields, secure text fields, switches, and sliders to coax values out of our intrepid user.

You should also notice that there are two items on the view that have disclosure indicators.
The first one, Protocol, takes the user to another table view that displays the available options
for that item. From that table view, the user can select a single value (see Figure 10-5).

Figure 10-3. The settings appli-
cation showing an entry for our
application in the simulator

Figure 10-4. Our application’s
primary settings view

Figure 10-5. Selecting a single
preference item from a list

24594ch10.indd 323 6/24/09 10:35:30 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults324

The other disclosure indicator on our application’s main view in the Settings application
allows the user to drill down to another set of preferences (see Figure 10-6). This child view
can have the same kinds of controls as the main settings view and can even have its own
child views. You may have noticed that the Settings application uses a navigation controller,
which it needs because it supports the building of hierarchical preference views.

When users actually launch our application, they will be presented with a list of the prefer-
ences gathered in the Settings application (see Figure 10-7).

In order to show how to update preferences from within our application, we also provide a
little information button in the lower-right corner that will take the user to another view to
set two of the preference values right in our application (see Figure 10-8).

Figure 10-6. A child settings
view in our application

Figure 10-7. Our application’s
main view

Figure 10-8. Setting some pref-
erences right in our application

Let’s get started, shall we?

Creating the Project
In Xcode, press ⌘⇧N or select New Project… from the File menu. When the new project
assistant comes up, select Application from under the iPhone heading in the left pane, and
then click the Utility Application icon before clicking the Choose… button. Name your new
project AppSettings.

24594ch10.indd 324 6/24/09 10:35:30 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 325

This is a new project template that we haven’t used before, so let’s take a second to look at
the project before we proceed. This template creates an application very similar to the one
we built in Chapter 6. The application has a main view and a secondary view called the flip-
side view. Tapping the information button on the main view takes you to the flipside view,
and tapping the Done button on the flipside view takes you back to the main view.

You’ll notice that, for the first time, there is no Classes folder in our Xcode project (see
Figure 10-9). Because it takes several files to implement this type of application, the template
very kindly organizes the files in groups for us to make our lives easier. Expand the folders
Main View, Flipside View, and Application Delegate. Heck, while you’re in the folder-expanding
groove, flip open Resources too.

Figure 10-9. Our project created from the Utility Application template

All the classes that make up the main view, including the view controller and a subclass of
UIView, are included in the folder called Main View. Likewise, all source code files needed to
implement the flipside view are contained in the folder called Flipside View. Finally, the appli-
cation delegate is contained in a folder called (wait for it…) Application Delegate.

This template has provided us with a custom subclass of UIView for both the main and
flipside views. We won’t actually need to subclass UIView in this application for either of
our views, but we’ll leave both FlipsideView and MainView in our project. It won’t hurt
 anything to leave them as is, but if we remove them, we will have to go rewire the nibs to
point to UIView.

24594ch10.indd 325 6/24/09 10:35:30 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults326

Working with the Settings Bundle
The Settings application bases the display of preferences for a given application on the
contents of the settings bundle inside that application. Each settings bundle must have a
property list, called Root.plist, which defines the root level preferences view. This property
list must follow a very precise format, which we’ll talk about in a few minutes. If it finds a set-
tings bundle with an appropriate Root.plist file, the Settings application will build a settings
view for our application based on the contents of the property list. If we want our prefer-
ences to include any subviews, we have to add additional property lists to the bundle and
add an entry to Root.plist for each child view. You’ll see exactly how to do that in this chapter.

 One small wrinkle with this process is that you can’t add or delete items from a settings
bundle from within Xcode. You can change the contents of files that are already in the set-
tings bundle from Xcode, but if you need to actually add or remove items, you’ll have to do it
in the Finder. No worries, we’ll show you how to do this a bit further down.

Adding a Settings Bundle to Our Project
In the Groups & Files pane, click the root object (the one called AppSettings, which should be
at the very top of the list) and then select New File… from the File menu or press ⌘N. In the
left pane, select Resource under the iPhone OS heading, and then select the Settings Bundle
icon (see Figure 10-10). Click the Next button, and choose the default name of Settings.
bundle by pressing return.

Figure 10-10. Creating a settings bundle

24594ch10.indd 326 6/24/09 10:35:30 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 327

You should now see a new item in Xcode’s Groups & File pane called Settings.bundle. Expand
Settings.bundle, and you should see two items, an icon named Root.plist and a folder named
en.lproj. We’ll discuss en.lproj in Chapter 17 when we talk about localizing your application
into other languages. For the moment, let’s just concentrate on Root.plist.

Setting Up the Property List
Single-click Root.plist, and take a look at the editor pane. You’re looking at Xcode’s property
list editor. This editor functions in the same way as the Property List Editor application in
/Developer/Applications/Utilities.

Property lists all have a root node, which has a node type of Dictionary, which means
it stores items using a key value, just as an NSDictionary does. All of the children of a
 Dictionary node need to have both a key and a value. There can be only one root node in
any given property list, and all nodes must come under it.

There are several different types of nodes that can be put into a property list. In addition
to Dictionary nodes, which allow you to store other nodes under a key, there are also Array
nodes, which store an ordered list of other nodes similar to an NSArray. The Dictionary and
Array types are the only property list node types that can contain other nodes. There are also
a number of other node types designed to hold data. The data node types are Boolean, Data,
Date, Number, and String.

TIP
Although you can use most kinds of objects as a key in an NSDictionary, keys in property list diction-
ary nodes have to be strings, though you are free to use any node type for the values.

When creating a settings property list, you have to follow a defined format. Fortunately,
when you added the settings bundle to your project, a properly formatted property list,
called Root.plist, was created for you. This is the Root.plist that you just clicked in the settings
bundle.

In the Root.plist editor pane, expand the node named PreferenceSpecifiers (see Figure 10-11).

Figure 10-11. Root.plist in the editor pane

24594ch10.indd 327 6/24/09 10:35:30 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults328

Before we add our preference specifiers, let’s look at the property list so you can see the
required format. We’ll talk about the first item, StringsTable, in Chapter 17 as well; a strings
table is also used in translating your application into another language. Since it is optional,
you can delete that entry now by clicking it and pressing the delete key. You can leave it
there if you like, since it won’t do any harm.

The next item under the root node is PreferenceSpecifiers, and it’s an array. Click its disclosure
triangle to reveal its subitems. This array node is designed to hold a set of dictionary nodes,
each of which represents a single preference that the user can enter or a single child view
that the user can drill down into. You’ll notice that Xcode’s template kindly gave us four
nodes. Those nodes aren’t likely to reflect our actual preferences, so delete Item 2, Item 3,
and Item 4 by single-clicking each of those rows and pressing the delete key.

Single-click Item 1 but don’t expand it. Look at the right edge of the row, and notice the
button with the plus icon. That button is used to add a sibling node after this row. In other
words, it will add another node at the same level as this one. If we click that icon now (don’t
click it, just follow along), we will get a new row called Item 2 right after Item 1.

Now expand Item 1, and notice that the button changes to a different icon, one with three
horizontal lines. That new icon indicates that clicking that button now will add a child node,
so if we click it now (again, don’t click it, just follow along), we will get a new row underneath
Item 1.

The first row under Item 1 has a key of Type, and every property list node in the Preference
Specifiers array must have an entry with this key. It’s typically the first one, but order
doesn’t matter in a dictionary, so the Type key doesn’t have to be first. The Type key tells the
Settings application what type of data is associated with this item.

Take a look at the Type field under Item 1. The value of this Type field, PSGroupSpecifier, is
used to indicate that this item represents the start of a new group. Each item that follows will
be part of this group, until the next item with a Type of PSGroupSpecifier. If you look back at
Figure 10-4, you’ll see that the Settings application presents the settings in a grouped table.
Item 1 in the PreferenceSpecifiers array in a settings bundle property list should always be a
PSGroupSpecifier so the settings start in a new group, because you need at least one group in
every Settings table.

The only other entry in Item 1 has a key of Title, and this is used to set an optional header just
above the group that’s being started. If you look again back at Figure 10-4, you’ll see that
our first group is called General Info. Double-click the value next to Title, and change it from
Group to General Info.

24594ch10.indd 328 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 329

Adding a Text Field Setting
We now need to add a second item in this array, which will represent the first actual
preference field. We’re going to start with a simple text field. If we single-click the Preference-
Specifiers row in the editor pane, and click the button to add a child, the new row will be
inserted at the beginning of the list, which is not what we want. We want to add a row at the
end of the array. To do this, click the disclosure triangle to the left of Item 1 to close it, and
then select Item 1 and click the plus button at the end of the row, which will give us a new
sibling row after the current row (see Figure 10-12).

Figure 10-12. Adding a new sibling row to Item 1

The new row will default to a String node type, which is not what we want. Remember,
each item in the PreferenceSpecifiers array has to be a dictionary, so click the word String,
and change the node type to Dictionary. Now, click the disclosure triangle next to Item 2 to
expand it. It doesn’t actually contain anything yet, so the only differences you’ll see are that
the disclosure triangle will point down and the button to add sibling nodes will change to
let you add child nodes. Click the add child node button (the button to the right with three
lines) now to add our first entry to this dictionary.

A new row will come up and default to a String type, which is what we want. The new
row’s key value will default to New item. Change it to Type, and then double-click the Value
column, and enter PSTextFieldSpecifier, which is the type value used to tell the Settings appli-
cation that we want the user to edit this setting in a text field.

In this example, PSTextFieldSpecifier is a type. More specifically, it is the type of a specific pref-
erence field. When you see Type in the Key column, we’re defining the type of field that will
be used to edit the preference.

Click the button with the plus icon to the right of the Type row to add another item to our
dictionary. This next row will specify the label that will be displayed next to the text field.
Change the key from New item to Title. Now press the tab key. Notice that you are now all set
to edit the value in the Value column. Set it to Username. Now press the plus button at the
end of the Title row to add yet another item to our dictionary.

Change the key for this new entry to Key (no, that’s not a misprint, you’re really setting the
key to “Key”). For a value, type in username. Recall that we said that user defaults work like a
dictionary? Well, this entry tells the Settings application what key to use when it stores the
value entered in this text field. Recall what we said about NSUserDefaults? It lets you store
values using a key, similar to an NSDictionary. Well, the Settings application will do the

24594ch10.indd 329 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults330

same thing for each of the preferences it saves on your behalf. If you give it a key value of
foo, then later in your application, you can request the value for foo, and it will give you the
value the user entered for that preference. We will use this same key value later to retrieve
this setting from the user defaults in our application.

NOTE
Notice that our Title had a value of Username and our Key a value of username. This uppercase/lowercase
difference will happen frequently. The Title is what appears on the screen, so the capital “U” makes sense.
The Key is a text string we’ll use to retrieve preferences from the user defaults, so all lowercase makes
sense there. Could we use all lowercase for a Title? You bet. Could we use all capitals for Key? Sure! As long
as you capitalize it the same way when you save and when you retrieve, it doesn’t matter what convention
you use for your preference keys.

Add another item to our dictionary, giving this one a key of AutocapitalizationType, and a
value of None. This specifies that the text field shouldn’t attempt to autocapitalize what the
user types in.

Create one last new row and give it a key of AutocorrectionType and a value of No. This will
tell the Settings application not to try to autocorrect values entered into this text field. If you
did want the text field to use autocorrection, then you would change the value in this row to
Yes. When you’re all done, your property list should look like the one shown in Figure 10-13.

Figure 10-13. The finished text field specified in Root.plist

Save the property file, and let’s see if everything is set up and working. We should be able
to compile and run the application now. Even though our application doesn’t do anything
yet, we should be able to click the home button on the iPhone simulator, and then select the
Settings application to see an entry for our application (see Figure 10-3).

Try it now by selecting Build and Run from the Build menu. If you click the home button
and then the icon for the Settings application, you should find an entry for our application,
which uses the application icon we added earlier. If you click the AppSettings row, you should
be presented with a simple settings view with a single text field, as shown in Figure 10-14.

24594ch10.indd 330 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 331

Figure 10-14. Our root view in
the Settings application after
adding a group and a text field

Adding a Secure Text Field Setting
Quit the simulator, and go back to Xcode. We’re not done
yet, but you should now have a sense of how easy adding
preferences to your application is. Let’s add the rest of the
fields for our root settings view. The first one we’ll add is a
secure text field for the user’s password.

Here’s an easy way to add another node. Collapse Item 2 in
the PreferenceSpecifiers array. Now select Item 2. Press ⌘C
to copy it to the clipboard, and then press ⌘V to paste it
back. This will create a new Item 3 that is identical to Item
2. Expand the new item, and change the Title to Password
and the Key to password.

Next, add one more child to the new item. Remember, the
order of items does not matter, so feel free to place it right
below the Key item. Give the new item a Key of IsSecure,
and change the Type to Boolean. Once you do that, the
space where you normally type in a value will change to a
checkbox. Click it to check the box, which tells the Settings
application that this field needs to be a password field
rather than just an ordinary text field.

Adding a Multivalue Field
The next item we’re going to add is a multivalue field. This type of field will automatically
generate a row with a disclosure indicator, and clicking it will take you down to another
table where you can select one of several rows. Collapse Item 3; select the row; and click the
plus icon at the end of the row to add Item 4. Change Item 4’s Type to Dictionary, and expand
Item 4 by clicking the disclosure triangle.

Give it a child row with a key of Type and a value of PSMultiValueSpecifier. Add a second row
with a key of Title and value of Protocol. Now create a third row with a key of Key and a value
of protocol. The next part is a little tricky, so let’s talk about it before we do it.

We’re going to add two more children to Item 4, but they are going to be Array type nodes,
not String type nodes. One, called Titles, is going to hold a list of the values that the user
can select from. The other, called Values, is going to hold a list of the values that actually get
stored in the User Defaults. So, if the user selects the first item in the list, which corresponds
to the first item in the Titles array, the Settings application will actually store the first value
from the Values array. This pairing of Titles and Values lets you present user-friendly text to
the user but actually store something else, like a number, a date, or a different string. Both
of these arrays are required. If you want them both to be the same, you can create one array,

24594ch10.indd 331 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults332

copy it, paste it back in, and change the key so that you have two arrays with the same con-
tent but stored under different keys. We’ll actually do just that.

Add a new child to Item 4. Change its key to Values and set its type to Array. Expand the array,
and add five child nodes. All five nodes should be String type nodes and should contain the
following values: HTTP, SMTP, NNTP, IMAP, and POP3.

TIP
Note that if you enter the first value and press return, you’ll be editing the value just beneath it. Shortcut!

Once you’ve entered all five, collapse Values, and select it.
Then, press ⌘C to copy it, and press ⌘V to paste it back. This
will create a new item with a key of Values - 2. Double-click
Values - 2, and change it to Titles.

We’re almost done with our multivalue field. There’s just one
more required value in the dictionary, which is the default
value. Multivalue fields must have one and only one row
selected, so we have to specify the default value to be used
if none has yet been selected, and it needs to correspond
to one of the items in the Values array (not the Titles array if
they are different). Add another child to Item 4. Give it a key
of DefaultValue and a value of SMTP.

Let’s check our work. Save the property list, build, and run
again. When your application starts up, press the home but-
ton and launch the Settings application. When you select
AppSettings, you should now have three fields on your root
level view (see Figure 10-15). Go ahead and play with your
creation, and then let’s move on.

Adding a Toggle Switch Setting
The next item we need to get from the user is a Boolean value that indicates whether the
warp engines are turned on. To capture a Boolean value in our preferences, we are going to
tell the Settings application to use a UISwitch by adding another item to our Preference-
Specifiers array with a type of PSToggleSwitchSpecifier.

Collapse Item 4 if it’s currently expanded, and then single-click it to select it. Click the
plus icon at the right side of the row to create Item 5. Change its type to Dictionary, and
then expand Item 5, and add a child row. Give the child row a key of Type and a value of

Figure 10-15. Three fields
down

24594ch10.indd 332 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 333

 PSToggleSwitchSpecifier. Add another child row with a key of Title and a value of Warp Drive.
Next, add a third child row with a key of Key and a value of warp.

By default, a toggle switch will cause a Boolean YES or NO to get saved into the user defaults.
If you would prefer to assign a different value to the on and off positions, you can do that by
specifying the optional keys TrueValue and FalseValue. You can assign strings, dates or num-
bers to either the on position (TrueValue) or the off position (FalseValue) so that the Settings
application will store the string you specify instead of just storing YES or NO. Let’s set the on
position to save the string Engaged and the off position to store Disabled.

Do this by adding two more children to Item 5, one with a key of TrueValue and a value of
Engaged, and a second one with a key of FalseValue and a value of Disabled.

We have one more required item in this dictionary, which is the default value. If we had not
supplied the option FalseValue and TrueValue items, we would create a new row with a key
of DefaultValue and change the type from String to Boolean. However, because we did add
those two items, the value we put in DefaultValue has to match either the value passed in
TrueValue or the one passed in FalseValue.

Let’s make our warp engines on by default, so create one last child to Item 5, give it a key of
DefaultValue and a value of Engaged. Note that the string “Engaged” is what will be stored in
the user defaults, not what will appear on the screen. We just wanted to be clear on that.

Adding the Slider Setting
The next item we need to implement is a slider. In the Settings application, a slider can have
a small image at each end, but it can’t have a label. Let’s put the slider in its own group with
a header so that the user will know what the slider does.

Single-click Item 1 under PreferenceSpecifiers, and press ⌘C to copy it to the clipboard. Now,
select Item 5, making sure it’s collapsed, and then press ⌘V to paste. Since Item 1 was a
group specifier, the item we just pasted in as the new Item 6 is also a group specifier and will
tell the Settings application to start a new group at this location.

Expand Item 6, double-click the value in the row labeled Title and change the value to Warp
Factor.

Collapse Item 6 and select it. Then, click the button at the end of its row to add a new sibling
row. Change the Type of the new row, Item 7, from String to Dictionary and then expand the
new row. Add a child row, and give it a key of Type and a value of PSSliderSpecifier, which
indicates to the Settings application that it should use a UISlider to get this information
from the user. Add another child with a key of Key and a value of warpFactor so that the
 Settings application knows what key to use when storing this value.

24594ch10.indd 333 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults334

We’re going to allow the user to enter a value from one to ten, and we’ll set the default to
warp 5. Sliders need to have a minimum value, a maximum value, and a starting (or default)
value, and all of these need to be stored as numbers, not strings, in your property list. To
do this, add three more child rows to Item 7, setting the Type of all three rows from String to
Number. Give the first one a key of DefaultValue and a value of 5. Give the second one a key
of MinimumValue and a value of 1, and give the final one a key of MaximumValue and a value
of 10.

If you want to test the slider, go ahead, but hurry back. We’re going to do just a bit more cus-
tomization. Sliders allow placement of a small 21-pixel 21-pixel image at each end of the
slider. Let’s provide little icons to indicate that moving the slider to the left slows us down,
and moving it to the right speeds us up.

In the 10 AppSettings folder in the project archive that accompanies this book, you’ll find two
icons called rabbit.png and turtle.png. We need to add both of these to our settings bundle.
Because these images need to be used by the Settings application, we can’t just put them in
our Resources folder, we need to put them in the settings bundle so the Settings application
can get them. To do that, go to the Finder and navigate to wherever you saved your Xcode
project. In that same folder, you’ll find an icon named Settings.bundle.

Remember, bundles look like files in the Finder, but they are
really folders, and you can get to their contents by right-
clicking (or control-clicking) the bundle’s icon and selecting
Show Package Contents. This will open a new window, and
you should see the same two items that you see in Settings.
bundle in Xcode. Copy the two icon files, rabbit.png and
turtle.png, from the 10 AppSettings folder to this folder.

You can leave this window open in the Finder, as we’ll need
to copy another file here in a few minutes. For now, go back
to Xcode, and let’s tell the slider to use these two images.

Go back to Root.plist and add two more child rows under
Item 7. Give one a key of MinimumValueImage and a value
of turtle.png. Give the other a key of MaximumValueImage
and a value of rabbit.png. Save your property list, and let’s
build and run to make sure everything is still hunky-dory. If
everything is, you should be able to navigate to the Settings
application and find the slider waiting for you with the
sleepy turtle and the happy rabbit at each end of the slider
(see Figure 10-16).

Figure 10-16. We have text
fields, multivalue fields, a
toggle switch, and a slider.
We’re almost done.

24594ch10.indd 334 6/24/09 10:35:31 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 335

Adding a Child Settings View
We’re going to add another preference specifier to tell the Settings application that we want
it to display a child settings view. This specifier will present a row with a disclosure indicator
that, when tapped, will take the user down to a whole new view full of preferences. Before
we add that node, however, since we don’t want this new preference to be grouped with the
slider, we’re going to copy the group specifier in Item 1 and paste it at the end of the Prefer-
enceSpecifiers array to create a new group for our child settings view. In Root.plist, collapse
Item 1 if it’s expanded, and then single-click it to select it and press ⌘C to copy it to the clip-
board. Next, collapse Item 7 if it’s expanded; single-click it to select it, and then press ⌘V to
paste in a new Item 8. Expand Item 8, and double-click the value column next to the key Title,
changing it from General Info to Additional Info.

Now, collapse Item 8 again. Select it, and press the add sibling button at the right end of the
row to add Item 9, which will be our actual child view. Change the new row’s type from String
to Dictionary and expand it by clicking the disclosure triangle. Add a child row, and give it a
key of Type and a value of PSChildPaneSpecifier. Add another child row with a key of Title and
a value of More Settings.

We need to add one final row, which will tell the Settings application which property list to
load for the More Settings view.

Add another child row and give it a key of File and a value of More. The file extension .plist
is assumed and must not be included, or the Settings application won’t find the property
list file.

We are adding a child view to our main preference view. That settings in that child view are
specified in the More.plist file. We need to copy More.plist into the settings bundle. We can’t
add new files to the bundle in Xcode, and the Property List Editor’s Save dialog will not let
us save into a bundle. So, we have to create a new property list, save it somewhere else, and
then drag it into the Settings.bundle window using the Finder.

You’ve now seen all the different types of preference fields that you can use in a settings
bundle property list file, so to save yourself some typing, why don’t you grab More.plist out
of the 10 AppSettings folder in the projects archive that accompanies this book, and drag it
into that Settings.bundle window we left open earlier.

TIP
When you create your own child settings views, the easiest way to do it is to make a copy of Root.plist
and give it a new name. Then delete all of the existing preference specifiers except the first one, and add
whatever preference specifiers you need to that new file.

24594ch10.indd 335 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults336

We’re done with our settings bundle. Feel free to compile, run, and test out the Settings
application. You should be able to reach the child view and set values for all the other fields.
Go ahead and play with it, and make changes to the property list if you want. We’ve covered
almost every configuration option available (at least at the time of this writing), but you
can find the full documentation of the settings property list format in the document called
 Settings Application Schema Reference in the iPhone Dev Center. You’ll find it on this page,
along with a ton of other useful reference documents:

http://developer.apple.com/iphone/library/navigation/Reference.html

Before we continue on, we’ve included an application icon with this chapter’s code to make
sure your program looks like ours. First, open the 10 AppSettings folder in the project archive,
grab the three image files there (icon.png, rabbit.png, and turtle.png) and add them to the
Resources folder of your project. Then, make icon.png your application icon by single-clicking
AppSettings-Info.plist in the Resources folder, and setting the value of the Icon file row to icon.
png. Be sure to save AppSettings-Info.plist when you are done.

NOTE
You might have noticed that two of the icons you just added are exactly the same ones you added to your
settings bundle earlier, and you might be wondering why. Remember: Applications on the iPhone can’t
read files out of other applications’ sandboxes. The settings bundle doesn’t become part of our applica-
tion’s sandbox, it becomes part of the Settings application’s sandbox. Since we also want to use those
icons in our application, we need to add them separately to our Resources folder so they get copied into
our application’s sandbox as well.

Reading Settings in Our Application
We’ve now solved half of our problem. The user can get to our preferences, but how do we
get to them? As it turns out, that’s the easy part.

We’ll take advantage of a class called NSUserDefaults to read in the user’s settings.
NSUserDefaults is implemented as a singleton, which means there is only one instance
of NSUserDefaults running in your application. To get access to that one instance, we call
the class method standardUserDefaults, like so:

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

Once we have a pointer to the standard user defaults, we use it just like an NSDictionary.
To get a value out of it, we can call objectForKey: which will return an Objective-C object
like an NSString, NSDate, or NSNumber. If we want to retrieve the value as a scalar like an

24594ch10.indd 336 6/24/09 10:35:32 AM

Download at Boykma.Com

http://developer.apple.com/iphone/library/navigation/Reference.html

CHAPTER 10: Application Settings and User Defaults 337

int, float, or BOOL, we can use other methods, such as intForKey:, floatForKey:, or
 boolForKey:.

When you were creating the property list for this application, you created an array of Prefer-
enceSpecifiers. Some of those specifiers were used to create groups. Others created interface
objects that the user used to set their settings. Those are the specifiers we are really inter-
ested in, because that’s where the real data is. Every specifier that was tied to a user setting
had a Key named Key. Take a minute to go back and check. For example, the Key for our slider
had a value of warpfactor. The Key for our Password field was password. We’ll use those keys
to retrieve the user settings.

So that we have a place to display the settings, let’s quickly set up our main view with a
bunch of labels. Before going over to Interface Builder, let’s create outlets for all the labels
we’ll need. Single-click MainViewController.h, and make the following changes:

#import "FlipsideViewController.h"
#define kUsernameKey @"username"
#define kPasswordKey @"password"
#define kProtocolKey @"protocol"
#define kWarpDriveKey @"warp"
#define kWarpFactorKey @"warpFactor"
#define kFavoriteTeaKey @"favoriteTea"
#define kFavoriteCandyKey @"favoriteCandy"
#define kFavoriteGameKey @"favoriteGame"
#define kFavoriteExcuseKey @"favoriteExcuse"
#define kFavoriteSinKey @"favoriteSin"

@interface MainViewController : UIViewController
 <FlipsideViewControllerDelegate> {
 UILabel *usernameLabel;
 UILabel *passwordLabel;
 UILabel *protocolLabel;
 UILabel *warpDriveLabel;
 UILabel *warpFactorLabel;

 UILabel *favoriteTeaLabel;
 UILabel *favoriteCandyLabel;
 UILabel *favoriteGameLabel;
 UILabel *favoriteExcuseLabel;
 UILabel *favoriteSinLabel;
}
@property (nonatomic, retain) IBOutlet UILabel *usernameLabel;
@property (nonatomic, retain) IBOutlet UILabel *passwordLabel;
@property (nonatomic, retain) IBOutlet UILabel *protocolLabel;
@property (nonatomic, retain) IBOutlet UILabel *warpDriveLabel;
@property (nonatomic, retain) IBOutlet UILabel *warpFactorLabel;

24594ch10.indd 337 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults338

@property (nonatomic, retain) IBOutlet UILabel *favoriteTeaLabel;
@property (nonatomic, retain) IBOutlet UILabel *favoriteCandyLabel;
@property (nonatomic, retain) IBOutlet UILabel *favoriteGameLabel;
@property (nonatomic, retain) IBOutlet UILabel *favoriteExcuseLabel;
@property (nonatomic, retain) IBOutlet UILabel *favoriteSinLabel;

- (void)refreshFields;
- (IBAction)showInfo;
@end

There’s nothing new here. We declare a bunch of constants. These are the key values that we
used in our property list file for the different preference fields. Then we declare ten outlets,
all of them labels, and create properties for each of them. Finally, we declare a method that
will read settings out of the user defaults and push those values into the various labels. We
put this functionality in its own method, because we have to do this same task in more than
one place. Now that we’ve got our outlets declared, let’s head over to Interface Builder.

Double-click MainView.xib to open it in Interface Builder. When it comes up, you’ll notice
that the background of the view is dark gray. Let’s change it to white. Single-click the Main
View icon in the nib’s main window, and press ⌘1 to bring up the attributes inspector. Use
the color well labeled Background to change the background to white. Now double-click the
Main View icon if the window labeled Main View is not already open.

Put the main window (the one titled MainView.xib) in list mode (the center View Mode but-
ton). Next, click the disclosure triangle to the left of the Main View icon. This reveals an icon
called Light Info Button (see Figure 10-17).

Figure 10-17. Using the list view mode

TIP
Got a complex Interface Builder list mode hierarchy that you want to open, all at once? Instead of expand-
ing each of the items individually, you can expand the entire hierarchy by holding down the option key
and clicking any of the list’s disclosure triangles.

24594ch10.indd 338 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 339

We’re going to change this icon so it will look good
on a white background. Single-click the Light Info
Button icon to select it, and then press ⌘1 to bring
up the attributes inspector. Change the button’s
Type from Info Light to Info Dark.

Now we’re going to add a bunch of labels to the
Main View so it looks like the one shown in Figure
10-18. We’ll need a grand total of twenty labels. Half
of them will be static labels that are right-aligned
and bold; the other half will be used to display the
actual values retrieved from the user defaults and
will have outlets pointing to them. Use Figure 10-18
as your guide to build this view. You don’t have to
match the appearance exactly, but you do need to
have one label on the view for each of the outlets
we declared. Go ahead and design the view. You
don’t need our help for this. When you’re done and
have it looking the way you like, come back, and
we’ll continue on.

The next thing we need to do is control-drag from
File’s Owner to each of the labels intended to display a settings value. You will control-drag a
total of ten times, setting each label to a different outlet. Once you have all ten outlets con-
nected to labels, save, close the MainView.xib window, and go back to Xcode.

Single-click MainViewController.m, and add the following code at the beginning of the file.

#import "MainViewController.h"
#import "MainView.h"

@implementation MainViewController
@synthesize usernameLabel;
@synthesize passwordLabel;
@synthesize protocolLabel;
@synthesize warpDriveLabel;
@synthesize warpFactorLabel;
@synthesize favoriteTeaLabel;
@synthesize favoriteCandyLabel;
@synthesize favoriteGameLabel;
@synthesize favoriteExcuseLabel;
@synthesize favoriteSinLabel;

Figure 10-18. The Main View window in
Interface Builder

24594ch10.indd 339 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults340

- (void)refreshFields {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 usernameLabel.text = [defaults objectForKey:kUsernameKey];
 passwordLabel.text = [defaults objectForKey:kPasswordKey];
 protocolLabel.text = [defaults objectForKey:kProtocolKey];
 warpDriveLabel.text = [defaults objectForKey:kWarpDriveKey];
 warpFactorLabel.text = [[defaults objectForKey:kWarpFactorKey]
 stringValue];
 favoriteTeaLabel.text = [defaults objectForKey:kFavoriteTeaKey];
 favoriteCandyLabel.text = [defaults objectForKey:kFavoriteCandyKey];
 favoriteGameLabel.text = [defaults objectForKey:kFavoriteGameKey];
 favoriteExcuseLabel.text = [defaults objectForKey:kFavoriteExcuseKey];
 favoriteSinLabel.text = [defaults objectForKey:kFavoriteSinKey];
}
- (void)viewDidAppear:(BOOL)animated {
 [self refreshFields];
 [super viewDidAppear:animated];
}
...

Also, let’s be a good memory citizen by inserting the following code into the existing
 dealloc and viewDidUnload methods:

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.usernameLabel = nil;
 self.passwordLabel = nil;
 self.protocolLabel = nil;
 self.warpDriveLabel = nil;
 self.warpFactorLabel = nil;
 self.favoriteTeaLabel = nil;
 self.favoriteCandyLabel = nil;
 self.favoriteGameLabel = nil;
 self.favoriteExcuseLabel = nil;
 self.favoriteSinLabel = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [usernameLabel release];
 [passwordLabel release];
 [protocolLabel release];
 [warpDriveLabel release];
 [warpFactorLabel release];
 [favoriteTeaLabel release];
 [favoriteCandyLabel release];
 [favoriteGameLabel release];
 [favoriteExcuseLabel release];

24594ch10.indd 340 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 341

 [favoriteSinLabel release];
 [super dealloc];
}
...

When the user is done using the flipside view where some preferences can be changed,
our controller will get notified of the fact. When that happens, we need to make sure our
labels are updated to show any changes, so add the following line of code to the existing
flipsideViewControllerDidFinish: method:

- (void)flipsideViewControllerDidFinish:
 (FlipsideViewController *)controller {
 [self refreshFields];
 [self dismissModalViewControllerAnimated:YES];
}

There’s not really much here that should throw you. The new method, refreshFields,
does nothing more than grab the standard user defaults, and sets the text property of all
the labels to the appropriate object from the user defaults, using the key values that we
put in our properties file. Notice that for warpFactorLabel, we’re calling stringValue on
the object returned. All of our other preferences are strings, which come back from the user
defaults as NSString objects. The preference stored by the slider, however, comes back as an
NSNumber, so we call stringValue on it to get a string representation of the value it holds.

After that, we added a viewDidAppear: method, where we call our refreshFields
method. We call refreshFields again when we get notified that the flipside controller is
being dismissed. This will cause our displayed fields to get set to the appropriate preference
values when the view loads, and then to get refreshed when the flipside view gets swapped
out. Because the flipside view is handled modally with the main view as its modal parent,
MainViewController’s viewDidAppear: method will not get called when the flipside view
is dismissed. Fortunately, the Utility Application template we chose has very kindly pro-
vided us with a delegate method we can use for exactly that purpose.

This class is done. You should be able to compile and run your application and have it look
something like Figure 10-7, except yours will be showing whatever values you entered in
your Settings application, of course. Couldn’t be much easier, could it?

Changing Defaults from Our Application
Now that we’ve got the main view up and running, let’s build the flipside view. As you
can see in Figure 10-19, the flipside view features our warp drive switch, as well as the
warp factor slider. We’ll use the same controls that the Settings application uses for these
two items: a switch and a slider. First, we need to declare our outlets, so single-click
FlipsideViewController.h, and make the following changes:

24594ch10.indd 341 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults342

@protocol FlipsideViewControllerDelegate;

@interface FlipsideViewController : UIViewController {
 id <FlipsideViewControllerDelegate> delegate;
 UISwitch *engineSwitch;
 UISlider *warpFactorSlider;
}

@property (nonatomic, assign) id <FlipsideViewControllerDelegate> delegate;
@property (nonatomic, retain) IBOutlet UISwitch *engineSwitch;
@property (nonatomic, retain) IBOutlet UISlider *warpFactorSlider;

- (IBAction)done;
@end

@protocol FlipsideViewControllerDelegate
- (void)flipsideViewControllerDidFinish:
 (FlipsideViewController *)controller;
@end

NOTE
Don’t worry too much about the extra code here.
As we saw before, the Utility Application template
makes MainViewController a delegate of the
FlipsideViewController, the extra code here
that hasn’t been in the other file templates we’ve used
implements that delegate relationship.

Now, double-click FlipsideView.xib to open it in Inter-
face Builder. If the Flipside View window is not open,
double-click the Flipside View icon in the nib’s main
window to open it. First, change the background color
using the attribute inspector to a lighter shade of gray,
about a 25% gray should work well. The default flipside
view background color is too dark for black text to look
good, but light enough that white text is hard to read.
Next, drag two Labels from the library and place them
on Flipside View window. Double-click one of them and
change it to read Warp Engines:. Double-click the other,
and call it Warp Factor:. You can use Figure 10-19 as a
placement guide.

Figure 10-19. Desiging the flipside
view in Interface Builder

24594ch10.indd 342 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 343

When you’re done placing the controls, double-click the
word Title at the top of the view and change it to read
Warp Settings.

Next, drag over a Switch from the library, and place it
against the right side of the view across from the label
that reads Warp Engines. Control-drag from the File’s
Owner icon to the new switch, and connect it to the
engineSwitch outlet.

Now drag over a Slider from the library, and place it
below the label that reads Warp Factor. Resize the slider
so that it stretches from the blue guide line on the left
margin to the one on the right, and then control-drag
from the File’s Owner icon to the slider, and connect it to
the warpFactorSlider outlet.

Single-click the slider if it’s not still selected, and press
⌘1 to bring up the attributes inspector. Set Minimum to
1.00, Maximum to 10.00, and Initial to 5.00. Next, select
turtle.png for Min Image and rabbit.png for Max Image.
Once you’re done, the inspector should look like
Figure 10-20.

Save and close the nib, and head back to Xcode so
we can finish the flipside view controller. Single-click
FlipsideViewController.m, and make the following
changes:

#import "FlipsideViewController.h"
#import "MainViewController.h"

@implementation FlipsideViewController
@synthesize delegate;
@synthesize engineSwitch;
@synthesize warpFactorSlider;

- (void)viewDidLoad {
 self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor];

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 engineSwitch.on = ([[defaults objectForKey:kWarpDriveKey]
 isEqualToString:@"Engaged"]) ? YES : NO;
 warpFactorSlider.value = [defaults floatForKey:kWarpFactorKey];
 [super viewDidLoad];
}

Figure 10-20. The attributes inspec-
tor for our Warp Factor slider

24594ch10.indd 343 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults344

- (void)viewWillDisappear:(BOOL)animated {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSString *prefValue = (engineSwitch.on) ? @"Engaged" : @"Disabled";
 [defaults setObject:prefValue forKey:kWarpDriveKey];
 [defaults setFloat:warpFactorSlider.value forKey:kWarpFactorKey];
 [super viewWillDisappear:animated];
}
...

Add the following lines of code to the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.engineSwitch = nil;
 self.warpFactorSlider = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [engineSwitch release];
 [warpFactorSlider release];
 [super dealloc];
}
...

In the viewDidLoad method, we deleted one line of code and added three (well, four,
because one line was too long to fit the page width of this book). The one line of code we
deleted wasn’t really important. Code in the template set the background color of the view
using a class method, and that line of code caused the flipside view to have a textured, dark
gray appearance rather than using the background that was set in Interface Builder. The
textured background made it difficult to read the text and to see the slider pictures that we
used; we deleted it to let the background color from Interface Builder shine through so our
text and icons could be seen more easily.

The four lines of code we added get a reference to the standard user defaults and use the
outlets for the switch and slider to set them to the values stored in the user defaults. Because
we opted to store strings rather than Booleans for the warp drive setting, we have to handle
the conversion in our code because a UISwitch instance is set using a BOOL property.

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 engineSwitch.on = ([[defaults objectForKey:kWarpDriveKey]
 isEqualToString:@"Engaged"]) ? YES : NO;
 warpFactorSlider.value = [defaults floatForKey:kWarpFactorKey];

24594ch10.indd 344 6/24/09 10:35:32 AM

Download at Boykma.Com

CHAPTER 10: Application Settings and User Defaults 345

We also overrode our parent’s viewWillDisappear: method so that we could stuff the
values from our controls back into the user defaults before the main view is shown again.
Because our controller’s viewDidDisappear: method will fire before the main view’s
 viewWillAppear: method, the changed values will already be stored in the user defaults
for the view to retrieve, so the main view will get updated with the correct new values.

Beam Me Up, Scotty
At this point, you should have a very solid grasp on both the Settings application and user
defaults. You know how to add a settings bundle to your application and how to build a
hierarchy of views for your application’s preferences. You also saw how to read and write
preferences using NSUserDefaults and how to let the user change preferences from within
your application, and you even got a chance to use a new project template in Xcode. There
really shouldn’t be much in the way of application preferences that you aren’t equipped to
handle now.

In the next chapter, we’re going to tackle the different approaches to file management on
the iPhone. We’ll cover different techniques for persisting your objects to the file system and
also take a look at using your iPhone’s embedded database, SQLite. You’ll also get your first
look at a very cool technology called Core Data. Ready? Let’s go!

24594ch10.indd 345 6/24/09 10:35:32 AM

Download at Boykma.Com

24594ch10.indd 346 6/24/09 10:35:32 AM

Download at Boykma.Com

Chapter 11

347

s
Basic Data
Persistence

o far, we’ve focused on the controller and view aspects of the Model-View-
Controller paradigm. Although several of our applications have read data out
of the application bundle, none of our applications has saved their data to any
form of persistent storage, persistent storage being any form of nonvolatile
storage that survives a restart of the computer or device. With the exception
of Application Settings, so far, every sample application either did not store
data or used volatile or nonpersistent storage. Every time one of our sample
applications launched, it appeared with exactly the same data it had the first
time you launched it.

This approach has worked for us up to this point. But in the real world, your
applications will need to persist data so that when users make changes,
those changes are stored and are there when they launch the program again.
A number of different mechanisms are available for persisting data on the
iPhone. If you’ve programmed in Cocoa for Mac OS X, you’ve likely used some
or all of these techniques.

In this chapter, we’re going to look at four different mechanisms for persist-
ing data to the iPhone’s file system: using property lists, object archives (or
archiving), the iPhone’s embedded relational database called SQLite3, and
Apple’s provided persistence tool called Core Data. We will write example
applications that use all four approaches.

24594ch11.indd 347 6/24/09 11:16:06 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence348

NOTE
Property lists, object archives, SQLite3, and Core Data are not the only ways you can persist data on an
iPhone. They are just the most common and easiest. You always have the option of using traditional C I/O
calls like fopen() to read and write data. You can also use Cocoa’s low-level file management tools. In
almost every case, doing so will result in a lot more coding effort and is rarely necessary, but those tools
are there if you need them.

Your Application’s Sandbox
All four of this chapter’s data-persistence mechanisms share an important common element,
your application’s /Documents folder. Every application gets its own /Documents folder, and
applications are only allowed to read and write from their own /Documents directory.

To give you some context, let’s take a look at what an application looks like on the iPhone.
Open a Finder window, and navigate to your home directory. Within that, drill down into
Library/Application Support/iPhoneSimulator/User/. At this point, you should see five subfold-
ers, one of which is named Applications (see Figure 11-1).

NOTE
If you’ve installed multiple versions of the SDK, you may see a few additional folders with names like
Library.previousInstall. That’s perfectly normal.

Figure 11-1. The layout of the User directory
showing the Applications folder

Although this listing represents the simulator, the file structure is similar to what’s on the
actual device. As is probably obvious, the Applications folder is where the iPhone stores its
applications. If you open the Applications folder, you’ll see a bunch of folders and files with
names that are long strings of characters. These names are generated automatically by
Xcode. Each of these folders contains one application and its supporting folders.

24594ch11.indd 348 6/24/09 11:16:06 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 349

Scattered among those application directories, you may spy the occasional .sb file. The .sb
files contain settings that the simulator uses to launch the program that shares the same
name. You should never need to touch those. If you open one of the application subdirec-
tories, however, you should see something that looks a little more familiar. In there, you’ll
find one of the iPhone applications you’ve built, along with three support folders: Docu-
ments, Library, and tmp. Your application stores its data in Documents, with the exception
of NSUserDefaults-based preference settings, which get stored in the Library/Preferences
folder. The tmp directory offers a place where your application can store temporary files. Files
written into /tmp will not be backed up by iTunes when your iPhone syncs, but your applica-
tion does need to take responsibility for deleting the files in /tmp once they are no longer
needed to avoid filling up the file system.

Getting the Documents Directory
Since our application is in a folder with a seemingly random name, how do we retrieve the
full path to the Documents directory so that we can read and write our files? It’s actually
quite easy. The C function NSSearchPathForDirectoriesInDomain() will locate vari-
ous directories for you. This is a Foundation function, so it is shared with Cocoa for Mac OS
X. Many of its available options are designed for OS X and won’t return any values on the
iPhone, either because those locations don’t exist on the iPhone (e.g., the Downloads folder)
or because your application doesn’t have rights to access the location due to the iPhone’s
sandboxing mechanism.

Here’s some code to retrieve the path to the Documents directory:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

The constant NSDocumentDirectory says we are looking for the path to the Documents
directory. The second constant, NSUserDomainMask, indicates that we want to restrict our
search to our application’s sandbox. In Mac OS X, this same constant is used to indicate that
we want the function to look in the user’s home directory, which explains its somewhat odd
name.

Though an array of matching paths is returned, we can count on our Documents directory
residing at index 0 in the array. Why? We know that only one directory meets the criteria
we’ve specified since each application has only one Documents directory. We can create a
filename, for reading or writing purposes, by appending another string onto the end of the
path we just retrieved. We’ll use an NSString method designed for just that purpose called
stringByAppendingPathComponent:, like so:

NSString *filename = [documentsDirectory
 stringByAppendingPathComponent:@”theFile.txt”];

24594ch11.indd 349 6/24/09 11:16:06 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence350

After this call, filename would contain the full path to a file called theFile.txt in our applica-
tion’s Documents directory, and we can use filename to create, read, and write from that file.

Getting the tmp Directory
Getting a reference to your application’s temporary directory is even easier than
getting a reference to the Documents directory. The Foundation function called
 NSTemporaryDirectory() will return a string containing the full path to your application’s
temporary directory. To create a filename for a file that will get stored in the temporary
 directory, we first find the temporary directory:

NSString *tempPath = NSTemporaryDirectory();

Then, we create a path to a file in that directory by appending a filename to that path, like this:

NSString *tempFile = [tempPath
 stringByAppendingPathComponent:@”tempFile.txt”];

File Saving Strategies
As a reminder, in this chapter, we’re going to look at four different approaches to data persis-
tence. All four approaches make use of your iPhone’s file system.

In the case of SQLite3, you’ll create a single SQLite3 database file and let SQLite3 worry
about storing and retrieving your data. In its simplest form, Core Data takes care of all the file
system management for you. With the other two persistence mechanisms, property lists and
archiving, you need to put some thought into whether you are going to store your data in a
single file or in multiple files.

Single-File Persistence
Using a single file is the easiest approach, and with many applications, it is a perfectly
acceptable one. You start off by creating a root object, usually an NSArray or NSDictionary,
though your root object can also be based on a custom class when using archiving. Next,
you populate your root object with all the program data that needs to be persisted. When-
ever you need to save, your code rewrites the entire contents of that root object to a single
file. When your application launches, it reads the entire contents of that file into memory,
and when it quits, it writes out the entire contents. This is the approach we’ll use in this
chapter.

The downside of using a single file is that you have to load all of your application’s data into
memory, and you have to write all of it to the file system for even the smallest changes. If
your application isn’t likely to manage more than a few megabytes of data, this approach is
probably fine, and its simplicity will certainly make your life easier.

24594ch11.indd 350 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 351

Multiple-File Persistence
The multiple file approach is definitely more complicated. As an example, you might write
an e-mail application that stored each e-mail message in its own file. There are obvious
advantages to this method. It allows the application to load only data that the user has
requested (another form of lazy loading), and when the user makes a change, only the files
that changed have to be saved. This method also gives you the opportunity to free up mem-
ory when you receive a low-memory notification, since any memory that is being used to
store data that the user is not currently looking at can be flushed and simply reloaded from
the file system the next time it’s needed. The downside of multiple-file persistence is that
it adds a fair amount of complexity to your application. For now, we’ll stick with single-file
persistence.

Persisting Application Data
Let’s get into the specifics of each of our persistence methods: property lists, object archives,
SQLite3, and Core Data. We’ll explore each of these in turn and build an application that uses
each mechanism to save some data to the iPhone’s file system. We’ll start with property lists.

Property List Serialization
Several of our applications have made use of property lists, most recently when we used a
property list to specify our application preferences. Property lists are convenient, because
they can be edited manually using Xcode or the Property List Editor application, and both
NSDictionary and NSArray instances can be written to and created from property lists as
long as the dictionary or array contains only specific serializable objects. A serialized object
has been converted into a stream of bytes so it can be stored in a file or transferred over a
network. Although any object can be made serializable, only certain objects can be placed
into a collection class, such as an NSDictionary or NSArray, and then stored to a property
list using the collection classes’ writeToFile:atomically: method. The Objective-C classes
that can be serialized this way are

NSArray

NSMutableArray

NSDictionary

NSMutableDictionary

NSData

NSMutableData

NSString

24594ch11.indd 351 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence352

NSMutableString

NSNumber

NSDate

If you can build your data model from just these objects, you can use property lists to easily
save and load your data. In fact, we’ve used this mechanism in many of the sample applica-
tions to provide you with data.

If you’re going to use property lists to persist your application data, you’ll use either an
NSArray or an NSDictionary to hold the data that needs to be persisted. Assuming that all
of the objects that you put into the NSArray or NSDictionary are serializable objects from
the preceding list, you can write a property list by calling the writeToFile:atomically:
method on the dictionary or array instance, like so:

[myArray writeToFile:@”/some/file/location/output.plist” atomically:YES];

NOTE
In case you were wondering, the atomically parameter tells the method to write the data to an
auxiliary file, not to the specified location. Once it has successfully written the file, it will then copy that
auxiliary file to the location specified by the first parameter. This is a safer way to write a file, because if
the application crashes during the save, the existing file, if there was one, will not be corrupted. It adds a
tiny bit of overhead, but in most situations, it’s worth the cost.

One problem with the property list approach is that custom objects cannot be serialized into
property lists. You also can’t use other delivered classes from Cocoa Touch that aren’t speci-
fied in the previous list of serializable objects, which means that classes like NSURL, UIImage
and UIColor cannot be used directly.

Not being able to serialize these objects also means that you can’t easily create derived or
calculated properties (e.g., a property that is the sum of two other properties), and some of
your code that really should be contained in model classes has to be moved to your control-
ler classes. Again, these restrictions are OK for simple data models and simple applications.
Most of the time, however, your application will be much easier to maintain if you create
dedicated model classes.

However, simple property lists can still be useful in complex applications. They are a great
way to include static data in your application. For example, when your application includes
a picker, often the best way to include the list of items to go in your picker is to create a
property list file and include it in your project’s Resources folder, which will cause it to get
compiled into your application.

24594ch11.indd 352 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 353

Let’s a build a simple application that uses property lists to store its data.

The Persistence Application
We’re going to build a program that lets you enter data into
four text fields, saves those fields to a property list file when
the application quits, and then reloads the data back from
that property list file the next time the application launches
(see Figure 11-2).

NOTE
In this chapter’s applications, we won’t be taking the time to
set up all the user interface niceties that we have in the past.
Tapping the return key, for example, will neither dismiss the
keyboard nor take you to the next field. If you want to add that
polish to the application, doing so would be good practice, but it’s
not really material to this chapter’s topic, so we won’t be walking
you through it.

Creating the Persistence Project
In Xcode, create a new project using the view-based
application template, and save the project with the name
Persistence. This project contains all the files that we’ll need to build our application, so we
can dive right into things. In a minute, we’re going to build a view with four text fields. Let’s
create the outlets we need before we go to Interface Builder. Expand the Classes folder. Then,
single-click the PersistenceViewController.h file, and make the following changes:

#import <UIKit/UIKit.h>

#define kFilename @”data.plist”

@interface PersistenceViewController : UIViewController {
 UITextField *field1;
 UITextField *field2;
 UITextField *field3;
 UITextField *field4;
}
@property (nonatomic, retain) IBOutlet UITextField *field1;
@property (nonatomic, retain) IBOutlet UITextField *field2;
@property (nonatomic, retain) IBOutlet UITextField *field3;

Figure 11-2. The property list
application

24594ch11.indd 353 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence354

@property (nonatomic, retain) IBOutlet UITextField *field4;
- (NSString *)dataFilePath;
- (void)applicationWillTerminate:(NSNotification *)notification;
@end

In addition to defining four text field outlets, we’ve also defined a constant for the filename
we’re going to use, as well as two additional methods. One method, dataFilePath, will cre-
ate and return the full pathname to our data file by concatenating kFilename onto the path
for the Documents directory. The other method, applicationWillTerminate:, which we’ll
discuss in a minute, will get called when our application quits and will save data to the prop-
erty list file.

Next, expand the Resources folder, and double-click PersistenceViewController.xib to open the
file in Interface Builder.

Designing the Persistence
Application View
Once Interface Builder comes up, the View win-
dow should open as well. If it doesn’t, double-click
the View icon to open it. Drag a Text Field from
the library, and place it against the top-right blue
guide line. Expand it to the left so that it reaches
about two-thirds of the way across the window, and
then press ⌘1 to bring up the attributes inspector.
Uncheck the box labeled Clear When Editing Begins.

Next, hold down the option key, and drag the
text box downward, which will create a copy of it.
Repeat this step two more times so that you have
four text fields. Now, drag four labels to the window,
and use Figure 11-3 as a placement and design
guide. Notice that we’ve placed the text fields at the
top of our view so that there is room for the key-
board.

Once you have all four text fields and labels placed,
control-drag from the File’s Owner icon to each of
the four text fields. Connect the topmost text field
to the outlet called field1, the next one to field2, the
third to field3, and the bottom one to field4. When you have all four text fields connected to
outlets, save, close PersistenceViewController.xib, and go back to Xcode.

Figure 11-3. Designing the Persistence
application’s view

24594ch11.indd 354 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 355

Editing the Persistence Classes
Single-click PersistenceViewController.m, and add the following code at the beginning of
the file:

#import “PersistenceViewController.h”

@implementation PersistenceViewController
@synthesize field1;
@synthesize field2;
@synthesize field3;
@synthesize field4;

- (NSString *)dataFilePath {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 return [documentsDirectory stringByAppendingPathComponent:kFilename];
}
- (void)applicationWillTerminate:(NSNotification *)notification {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:field1.text];
 [array addObject:field2.text];
 [array addObject:field3.text];
 [array addObject:field4.text];
 [array writeToFile:[self dataFilePath] atomically:YES];
 [array release];
}
#pragma mark -
- (void)viewDidLoad {
 NSString *filePath = [self dataFilePath];
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array = [[NSArray alloc] initWithContentsOfFile:filePath];
 field1.text = [array objectAtIndex:0];
 field2.text = [array objectAtIndex:1];
 field3.text = [array objectAtIndex:2];
 field4.text = [array objectAtIndex:3];
 [array release];
 }

 UIApplication *app = [UIApplication sharedApplication];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification
 object:app];
 [super viewDidLoad];
}
...

24594ch11.indd 355 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence356

Also, insert the following code into the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.field1 = nil;
 self.field2 = nil;
 self.field3 = nil;
 self.field4 = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [field1 release];
 [field2 release];
 [field3 release];
 [field4 release];
 [super dealloc];
}
...

The first method we added, dataFilePath, returns the full pathname of our data file by
finding the Documents directory and appending kFilename to it. This method will be called
from any code that needs to load or save data.

- (NSString *)dataFilePath {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 return [documentsDirectory stringByAppendingPathComponent:kFilename];
}

The second new method is called applicationWillTerminate:. Notice that it takes a
pointer to an NSNotification as an argument. applicationWillTerminate: is a notifica-
tion method, and all notifications take a single NSNotification instance as their argument.

A notification is a lightweight mechanism that objects can use to communicate with each
other. Any object can define one or more notifications that it will publish to the application’s
notification center, which is a singleton object that exists only to pass these notifications
between objects. Notifications are usually indications that some event occurred, and objects
that publish notifications include a list of notifications in their documentation. For example,
if you look at Figure 11-4, you can see that the UIApplication class publishes a number of
notifications.

24594ch11.indd 356 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 357

Figure 11-4. UIApplication documentation lists all
the notifications that it publishes.

The purpose of most notifications is usually pretty obvious from their names, but the
documentation contains further information if you find one whose purpose is unclear. Our
application needs to save its data before the application quits, so we are interested in the
notification called UIApplicationWillTerminateNotification. In a minute, when we
write our viewDidLoad method, we will subscribe to that notification and tell the notifica-
tion center to call this method when that notification happens:

- (void)applicationWillTerminate:(NSNotification *)notification {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:field1.text];
 [array addObject:field2.text];
 [array addObject:field3.text];
 [array addObject:field4.text];
 [array writeToFile:[self dataFilePath] atomically:YES];
 [array release];
}

The method itself is fairly simple. We create a mutable array, add the text from each of the
four fields to the array, and then write the contents of that array out to a property list file.
That’s all there is to saving our data using property lists.

24594ch11.indd 357 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence358

In the viewDidLoad method, we do a few more things. The first thing we do is check to see if
a data file already exists. If there isn’t one, we don’t want to bother trying to load it. If the file
does exist, we instantiate an array with the contents of that file and then copy the objects
from that array to our four text fields. Because arrays are ordered lists, by copying them in
the same order as we saved them, we are always sure to get the right values in the right
fields.

- (void)viewDidLoad {
 NSString *filePath = [self dataFilePath];
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array = [[NSArray alloc] initWithContentsOfFile:filePath];
 field1.text = [array objectAtIndex:0];
 field2.text = [array objectAtIndex:1];
 field3.text = [array objectAtIndex:2];
 field4.text = [array objectAtIndex:3];
 [array release];
 }

After we load the data from the property list, we get a reference to our application instance
and use that to subscribe to the UIApplicationWillTerminateNotification, using
the default NSNotificationCenter instance and a method called addObserver
:selector:name:object:. We pass an observer of self, which means that our
 PersistenceViewController is the object that needs to get notified. For selector, we
pass a selector to the applicationWillTerminate: method we wrote a minute ago, tell-
ing the notification center to call that method when the notification is published. The third
parameter, name:, is the name of the notification that we’re interested in receiving, and the
final parameter, object:, is the object we’re interested in getting the notification from. If we
pass nil for the final parameter, we would then get notified any time any method posted
the UIApplicationWillTerminateNotification.

 UIApplication *app = [UIApplication sharedApplication];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification
 object:app];

After subscribing to the notification, we just give our superclass a chance to respond to
viewDidLoad, and we’re done.

 [super viewDidLoad];
}

That wasn’t too bad, was it? When our main view is finished loading, we look for a property
list file. If it exists, we copy data from it into our text fields. Next, we register to be notified
when the application terminates. When the application does terminate, we gather up the

24594ch11.indd 358 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 359

values from our four text fields, stick them in a mutable array, and write that mutable array
out to a property list.

Why don’t you compile and run the application? It should build and then launch in the
simulator. Once it comes up, you should be able to type into any of the four text fields.
When you’ve typed something in them, press the home button (the circular button with the
rounded square in it at the bottom of the simulator window). It’s very important that you
press the home button. If you just quit the simulator, that’s the equivalent of force quitting
your application, and you will never receive the notification that the application is terminat-
ing, and your data will never get saved.

Property list serialization is pretty cool and very easy to use, but it’s a little limiting, since only
a small selection of objects can be stored in property lists. Let’s look at a little more robust
approach.

Archiving Model Objects
In the last part of Chapter 9, when we built the Presidents data model object, you saw an
example of the process of loading archived data using NSCoder. In the Cocoa world, the
term “archiving” refers to another form of serialization, but it’s a more generic type that any
object can implement. Any object specifically written to hold data (model objects) should
support archiving. The technique of archiving model objects lets you easily write complex
objects to a file and then read them back in. As long as every property you implement in
your class is either a scalar like int or float or else is an instance of a class that conforms
to the NSCoding protocol, you can archive your objects completely. Since most Foundation
and Cocoa Touch classes capable of storing data do conform to NSCoding (though there are
a few noteworthy exceptions like UIImage) archiving is actually relatively easy to implement
for most classes.

Although not strictly required to make archiving work, another protocol should be imple-
mented along with NSCoding—the NSCopying protocol, which is a protocol that allows your
object to be copied. Being able to copy an object gives you a lot more flexibility when using
data model objects. For example, in the Presidents application in Chapter 9, instead of that
complex code we had to write to store changes the user made so we could handle both the
Cancel and Save buttons, we could have made a copy of the president object and stored
the changes in that copy. If the user tapped Save, we’d just copy the changed version over to
replace the original version.

Conforming to NSCoding
The NSCoding protocol declares two methods, both required. One encodes your object into
an archive; the other one creates a new object by decoding an archive. Both methods are
passed an instance of NSCoder, which you work with very much like NSUserDefaults from

24594ch11.indd 359 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence360

the previous chapter. You can encode and decode both objects and native datatypes like
ints and floats using key-value coding.

A method to encode an object might look like this:

- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:foo forKey:kFooKey];
 [encoder encodeObject:bar forKey:kBarKey];
 [encoder encodeInt:someInt forKey:kSomeIntKey];
 [encoder encodeFloat:someFloat forKey:kSomeFloatKey]
}

To support archiving in our object, we have to encode each of our instance variables into
encoder using the appropriate encoding method, so we need to implement a method that
initializes an object from an NSCoder, allowing us to restore an object that was previously
archived. If you are subclassing a class that also conforms to NSCoding, you also need to
make sure you call encodeWithCoder: on your superclass, meaning your method would
look like this instead:

- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:foo forKey:kFooKey];
 [encoder encodeObject:bar forKey:kBarKey];
 [encoder encodeInt:someInt forKey:kSomeIntKey];
 [encoder encodeFloat:someFloat forKey:kSomeFloatKey]
 [super encodeWithCoder:encoder];
}

Implementing the initWithCoder: method is slightly more complex than
 encodeWithcoder:. If you are subclassing NSObject directly, or subclassing some other
class that doesn’t conform to NSCoding, your method would look something like the
 following:

- (id)initWithCoder:(NSCoder *)decoder {
 if (self = [super init]) {
 self.foo = [decoder decodeObjectForKey:kFooKey];
 self.bar = [decoder decodeObjectForKey:kBarKey];
 self.someInt = [decoder decodeIntForKey:kSomeIntKey];
 self.someFloat = [decoder decodeFloatForKey:kAgeKey];
 }
 return self;
}

The method initializes an object instance using [super init], and if that’s successful,
it sets its properties by decoding values from the passed-in instance of NSCoder. When
implementing NSCoding for a class with a superclass that also conforms to NSCoding, the
initWithCoder: method needs to look slightly different. Instead of calling init on super,
it has to call initWithCoder:, like so:

24594ch11.indd 360 6/24/09 11:16:07 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 361

- (id)initWithCoder:(NSCoder *)decoder {
 if (self = [super initWithCoder:decoder]) {
 self.foo = [decoder decodeObjectForKey:kFooKey];
 self.bar = [decoder decodeObjectForKey:kBarKey];
 self.someInt = [decoder decodeIntForKey:kSomeIntKey];
 self.someFloat = [decoder decodeFloatForKey:kAgeKey];
 }
 return self;
}

And that’s basically it. As long as you implement these two methods to encode and decode
all of your object’s properties, your object is archivable and can be written to and read from
archives.

Implementing NSCopying
As we mentioned a few minutes ago, conforming to NSCopying is a very good idea for
any data model objects as well. NSCopying has one method, called copyWithZone:, and
it allows objects to be copied. Implementing NSCopying is very similar to implementing
 initWithCoder:. You just need to create a new instance of the same class and then set all
of that new instance’s properties to the same values as this objects properties. Here’s what a
copyWithZone: method might look like:

- (id)copyWithZone:(NSZone *)zone {
 MyClass *copy = [[[self class] allocWithZone:zone] init];
 copy.foo = [self.foo copyWithZone:zone];
 copy.bar = [self.bar copyWithZone:zone];
 copy.someInt = self.someInt;
 copy.someFloat = self.someFloat;
 return copy;
}

Notice that we do not release or autorelease the new object we created. Copied objects are
implicitly retained and should therefore be released or autoreleased in the code that called
copy or copyWithZone:.

NOTE
Don’t worry too much about the NSZone parameter. This pointer is to a struct that is used by the
system to manage memory. Only in rare circumstances did developers ever need to worry about zones or
create their own, and nowadays, it’s almost unheard of to have multiple zones. Calling copy on an object
is exactly the same as calling copyWithZone: using the default zone, which is almost always what
you want.

24594ch11.indd 361 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence362

Archiving a Data Object
Creating an archive from an object or objects that conforms to NSCoding is relatively easy.
First, we create an instance of NSMutableData to hold the encoded data and then create an
NSKeyedArchiver instance to archive objects into that NSMutableData instance:

NSMutableData *data = [[NSMutableData alloc] init];
NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];

After creating both of those, we then use key-value coding to archive any objects we wish to
include in the archive, like this:

[archiver encodeObject:myObject forKey:@”keyValueString”];

Once we’ve encoded all the objects we want to include, we just tell the archiver we’re
done, write the NSMutableData instance to the file system, and do memory cleanup on our
objects.

[archiver finishEncoding];
BOOL success = [data writeToFile:@”/path/to/archive” atomically:YES];
[archiver release];
[data release];

If anything went wrong while writing the file, success will be set to NO. If success is YES, the
data was successfully written to the specified file. Any objects created from this archive will
be exact copies of the objects that were last written into the file.

Unarchiving a Data Object
To reconstitute objects from the archive, we go through a similar process. We create an
NSData instance from the archive file and create an NSKeyedUnarchiver to decode the data:

NSData *data = [[NSData alloc] initWithContentsOfFile:path];
NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];

After that, we read our objects from the unarchiver using the same key that we used to
archive the object:

self.object = [unarchiver decodeObjectForKey:@”keyValueString”];

24594ch11.indd 362 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 363

NOTE
The object returned by decodeObjectForKey: is autoreleased, so if we need to keep it around
beyond the current method, we need to retain it. Assigning it to a property declared with the retain
keyword usually handles this for you, but if you’re not assigning it to a property and need the object
to stick around past the end of the current event loop, then you need to explicitly send it a retain
 message.

Finally, we tell the archiver we are done and do our memory cleanup:

[unarchiver finishDecoding];
[unarchiver release];
[data release];

If you’re feeling a little overwhelmed by archiving, don’t worry; it’s actually fairly straight-
forward. We’re going to retrofit our Persistence application to use archiving, so you’ll get to
see it in action. Once you’ve done it a few times, archiving will become second nature, as all
you’re really doing is storing and retrieving your object’s properties using key-value coding.

The Archiving Application
Let’s retrofit the Persistence application so it uses archiving instead of property lists. We’re
going to be making some fairly significant changes to the Persistence source code, so you
might want to make a copy of your project before continuing.

Implementing the FourLines Class
Once you’re ready to proceed and have the Persistence project open in Xcode, single-click
the Classes folder and press ⌘N or select New File… from the File menu. When the new file
assistant comes up, select Cocoa Touch Class, then Objective-C class with a Subclass of NSOb-
ject, and name the file FourLines.m, making sure the box to create the header file is checked.
This file is going to be our data model, and it’s going to hold the data that we’re currently
storing in a dictionary in the property list application. Single-click FourLines.h, and make the
following changes:

#import <UIKit/UIKit.h>
#define kField1Key @”Field1”
#define kField2Key @”Field2”
#define kField3Key @”Field3”
#define kField4Key @”Field4”

24594ch11.indd 363 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence364

@interface FourLines : NSObject <NSCoding, NSCopying> {
 NSString *field1;
 NSString *field2;
 NSString *field3;
 NSString *field4;
}
@property (nonatomic, retain) NSString *field1;
@property (nonatomic, retain) NSString *field2;
@property (nonatomic, retain) NSString *field3;
@property (nonatomic, retain) NSString *field4;
@end

This is a very straightforward data model class with four string properties. Notice that
we’ve conformed the class to the NSCoding and NSCopying protocols. Now, switch over to
FourLines.m, and add the following code.

#import “FourLines.h”

@implementation FourLines
@synthesize field1;
@synthesize field2;
@synthesize field3;
@synthesize field4;
#pragma mark NSCoding
- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:field1 forKey:kField1Key];
 [encoder encodeObject:field2 forKey:kField2Key];
 [encoder encodeObject:field3 forKey:kField3Key];
 [encoder encodeObject:field4 forKey:kField4Key];
}
- (id)initWithCoder:(NSCoder *)decoder {
 if (self = [super init]) {
 self.field1 = [decoder decodeObjectForKey:kField1Key];
 self.field2 = [decoder decodeObjectForKey:kField2Key];
 self.field3 = [decoder decodeObjectForKey:kField3Key];
 self.field4 = [decoder decodeObjectForKey:kField4Key];
 }
 return self;
}
#pragma mark -
#pragma mark NSCopying
- (id)copyWithZone:(NSZone *)zone {
 FourLines *copy = [[[self class] allocWithZone: zone] init];
 copy.field1 = [[self.field1 copyWithZone:zone] autorelease];
 copy.field2 = [[self.field2 copyWithZone:zone] autorelease];
 copy.field3 = [[self.field3 copyWithZone:zone] autorelease];
 copy.field4 = [[self.field4 copyWithZone:zone] autorelease];

24594ch11.indd 364 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 365

 return copy;
}
@end

We just implemented all the methods necessary to conform to NSCoding and NSCopying.
We encode all four of our properties in encodeWithCoder: and decode all four of them
using the same four key values in initWithCoder:. In copyWithZone:, we create a new
FourLines object and copy all four strings to it. See? It’s not hard at all.

Implementing the PersistenceViewController Class
Now that we have an archivable data object, let’s use it to persist our application data. Single
click PersistenceViewController.h, and make the following changes:

#import <UIKit/UIKit.h>

#define kFilename @”data.plist”
#define kFilename @”archive”
#define kDataKey @”Data”

@interface PersistenceViewController : UIViewController {
 UITextField *field1;
 UITextField *field2;
 UITextField *field3;
 UITextField *field4;
}
@property (nonatomic, retain) IBOutlet UITextField *field1;
@property (nonatomic, retain) IBOutlet UITextField *field2;
@property (nonatomic, retain) IBOutlet UITextField *field3;
@property (nonatomic, retain) IBOutlet UITextField *field4;
- (NSString *)dataFilePath;
- (void)applicationWillTerminate:(NSNotification *)notification;
@end

All we’re doing here is specifying a new filename so that our program doesn’t try to load
the old property list in as an archive. We’ve also defined a new constant that will be the key
value we use to encode and decode our object.

Let’s switch over the PersistenceViewController.m, and make the following changes:

#import “PersistenceViewController.h”
#import “FourLines.h”

@implementation PersistenceViewController
@synthesize field1;
@synthesize field2;

24594ch11.indd 365 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence366

@synthesize field3;
@synthesize field4;
- (NSString *)dataFilePath {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 return [documentsDirectory stringByAppendingPathComponent:kFilename];
}
- (void)applicationWillTerminate:(NSNotification *)notification {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:field1.text];
 [array addObject:field2.text];
 [array addObject:field3.text];
 [array addObject:field4.text];
 [array writeToFile:[self dataFilePath] atomically:YES];
 [array release];

 FourLines *fourLines = [[FourLines alloc] init];
 fourLines.field1 = field1.text;
 fourLines.field2 = field2.text;
 fourLines.field3 = field3.text;
 fourLines.field4 = field4.text;

 NSMutableData *data = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];
 [archiver encodeObject:fourLines forKey:kDataKey];
 [archiver finishEncoding];
 [data writeToFile:[self dataFilePath] atomically:YES];
 [fourLines release];
 [archiver release];
 [data release];

}
#pragma mark -
- (void)viewDidLoad {

 NSString *filePath = [self dataFilePath];
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSMutableArray *array =[[NSMutableArray alloc]
 initWithContentsOfFile:filePath];
 field1.text = [array objectAtIndex:0];
 field2.text = [array objectAtIndex:1];
 field3.text = [array objectAtIndex:2];
 field4.text = [array objectAtIndex:3];
 [array release];

24594ch11.indd 366 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 367

 NSData *data = [[NSMutableData alloc]
 initWithContentsOfFile:[self dataFilePath]];
 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];
 FourLines *fourLines = [unarchiver decodeObjectForKey:kDataKey];
 [unarchiver finishDecoding];

 field1.text = fourLines.field1;
 field2.text = fourLines.field2;
 field3.text = fourLines.field3;
 field4.text = fourLines.field4;

 [unarchiver release];
 [data release];
 }

 UIApplication *app = [UIApplication sharedApplication];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification
 object:app];
 [super viewDidLoad];
}
...

Not very much has changed, really, and this new version takes several more lines of code
to implement than property list serialization, so you might be wondering if there really is
an advantage to using archiving over just serializing property lists. For this application, the
answer is simple: there really isn’t. But, think back to the last example in Chapter 9 where
we were letting the user edit a list of presidents, and each president had four different fields
that could be edited. To handle archiving that list of presidents with a property list would
involve iterating through the list of presidents, creating an NSDictionary instance for each
president, copying the value from each of their fields over to the NSDictionary instance,
and adding that instance to another array, which could then be written to a property list file.
That is, of course, assuming that we restricted ourselves to using only serializable properties.
If we didn’t, using property list serialization wouldn’t even be an option without doing a lot
of conversion work.

On the other hand, if we had an array of archivable objects, such as the FourLines class that
we just built, we could archive the entire array by archiving the array instance itself. Collec-
tion classes like NSArray, when archived, archive all of the objects they contain. As long as
every object you put into an array or dictionary conforms to NSCoding, you can archive the
array or dictionary and restore it, and all the objects that were in it when you archived it will
be in the restored array or dictionary. In other words, this approach scales beautifully (in

24594ch11.indd 367 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence368

terms of code size, at least), because no matter how many objects you add, the work to write
those objects to disk (assuming you’re using single-file persistence) is exactly the same. With
property lists, the amount of work increases with every object you add.

Using iPhone’s Embedded SQLite3
The third persistence option we’re going to discuss is the iPhone’s embedded SQL database
called SQLite3. SQLite3 is very efficient at storing and retrieving large amounts of data. It’s
also capable of doing complex aggregations on your data, with much faster results than
you’d get doing the same thing using objects. For example, if your application needed to cal-
culate the sum of a particular field across all the objects in your application, or if you needed
the sum from just the objects that meet certain criteria, SQLite3 would allow you to do that
without loading every object into memory. Getting aggregations from SQLite3 is several
orders of magnitude faster than loading all the objects into memory and summing up their
values. Being a full-fledged embedded database, SQLite3 contains tools to make it even
faster by, for example, creating table indexes that can speed up your queries.

TIP
There are two schools of thought about the pronunciation of “SQL” and “SQLite.” Most official documen-
tation says to pronounce “SQL” as “Ess-Queue-Ell” and “SQLite” as “Ess-Queue-Ell-Light.” Many people
pronounce them, respectively, as “Sequel” and “Sequel Light.”

SQLite3 uses the Structured Query Language (SQL). SQL is the standard language used
to interact with relational databases, and it is a language with its own syntax and a lot of
subtleties that are way beyond the scope of this book. Whole books have been written on
the syntax of SQL (dozens of them, in fact), as well as on SQLite itself. So, if you don’t already
know SQL and you want to use SQLite3 in your application, you’re going to have a little work
ahead of you. We’ll show you how to set up and interact with the SQLite database from your
iPhone applications, and you’ll see some of the basics of the syntax in this chapter. But to
really make the most of SQLite3, you’re going to need to do some additional research and
exploration.

If you’re completely new to SQL, you might want to find out more about SQLite3 and the
SQL language before continuing on with this chapter. A couple of good starting points are
the Introduction to the SQLite3 C API at http://www.sqlite.org/cintro.html and the
SQLite SQL Language Guide at http://www.sqlite.org/lang.html.

Relational databases, including SQLite3, and object-oriented programming languages use
fundamentally different approaches to storing and organizing data. The approaches are
different enough that numerous techniques and many libraries and tools for converting

24594ch11.indd 368 6/24/09 11:16:08 AM

Download at Boykma.Com

http://www.sqlite.org/lang.html
http://www.sqlite.org/cintro.html

CHAPTER 11: Basic Data Persistence 369

between the two have arisen. These different techniques are collectively called object-
relational mapping (ORM). There are currently several ORM tools available for Cocoa Touch.
In fact, we’ll look at one ORM solution provided by Apple called Core Data in the next
section. In this chapter, we’re going to focus on the basics, including setting up SQLite3, cre-
ating a table to hold your data, and saving data to and retrieving values from the database.
Obviously, in the real world, such a simple application wouldn’t warrant the investment in
SQLite3. But its simplicity is exactly what makes it a good learning example.

Creating or Opening the Database
Before you can use SQLite3, you have to open the database. The command that’s used to do
that, sqlite3_open(), will open an existing database, or if none exists at the specified loca-
tion, it will create a new one. Here’s what the code to open a new database might look like:

sqlite3 *database;
int result = sqlite3_open(“/path/to/database/file”, &database);

If result is equal to the constant SQLITE_OK, then the database was successfully opened.
One thing you should note here is that the path to the database file has to be passed in as a
C string, not as an NSString. SQLite3 was written in portable C, not Objective-C, and it has
no idea what an NSString is. Fortunately, there is an NSString method that generates a
C-string from an NSString instance:

char *stringPath = [pathString UTF8String];

When you’re all done with an SQLite3 database, you close the database by calling

sqlite3_close(database);

Databases store all their data in tables. You can create a new table by crafting an SQL CREATE
statement and passing it in to an open database using the function sqlite3_exec, like so:

char * errorMsg;
const char *createSQL = “CREATE TABLE IF NOT EXISTS PEOPLE
 (ID INTEGER PRIMARY KEY AUTOINCREMENT, FIELD_DATA TEXT)”;
int result = sqlite3_exec (database, createSQL, NULL, NULL, &errorMsg;);

As you did before, you need to check result for SQLITE_OK to make sure your command
ran successfully. If it didn’t, errorMsg will contain a description of the problem that occurred.
The function sqlite3_exec is used to run any command against SQLite3 that doesn’t
return data. It’s used for updates, inserts, and deletes. Retrieving data from the database is
little more involved. You first have to prepare the statement by feeding it your SQL SELECT
 command:

24594ch11.indd 369 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence370

NSString *query = @”SELECT ID, FIELD_DATA FROM FIELDS ORDER BY ROW”;
sqlite3_stmt *statement;
int result = (sqlite3_prepare_v2(database, [query UTF8String],
 -1, &statement, nil);

NOTE
All of the SQLite3 functions that take strings require an old-fashioned C string. In the create example, we
created and passed a C string, but in this example, we created an NSString and derived a C string by
using one of NSString’s methods called UTF8String. Either method is acceptable. If you need to do
manipulation on the string, using NSString or NSMutableString will be easier, but converting
from NSString to a C string incurs a tiny bit of extra overhead.

If result equals SQLITE_OK, your statement was successfully prepared, and you can start
stepping through the result set. Here is an example of stepping through a result set and
retrieving an int and an NSString from the database:

while (sqlite3_step(statement) == SQLITE_ROW) {
 int rowNum = sqlite3_column_int(statement, 0);
 char *rowData = (char *)sqlite3_column_text(statement, 1);
 NSString *fieldValue = [[NSString alloc] initWithUTF8String:rowData];
 // Do something with the data here
 [fieldValue release];
}
sqlite3_finalize(statement);

Bind Variables
Although it’s possible to construct SQL strings to insert values, it is common practice to use
something called bind variables when inserting into a database. Handling strings correctly,
making sure they don’t have invalid characters and that quotes are handled property can
be quite a chore. With bind variables, those issues are taken care of for us. To insert a value
using a bind variable, you create your SQL statement as normal but put a question mark into
the SQL string. Each question mark represents one variable that has to be bound before the
statement can be executed. Then you prepare the SQL statement, bind a value to each of the
variables, and then execute the command.

Here’s an example that prepares a SQL statement with two bind variables, binds an int to
the first variable and a string to the second variable, and then executes and finalizes the
statement:

 char *sql = “insert into foo values (?, ?);”;
 sqlite3_stmt *stmt;
 if (sqlite3_prepare_v2(database, sql, -1, &stmt, nil) == SQLITE_OK) {

24594ch11.indd 370 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 371

 sqlite3_bind_int(stmt, 1, 235);
 sqlite3_bind_text(stmt, 2, “Bar”, -1, NULL);
 }
 if (sqlite3_step(stmt) != SQLITE_DONE)
 NSLog(@”This should be real error checking!”);
 sqlite3_finalize(stmt);

There are multiple bind statements available depending on the datatype you wish to use.
The first parameter to any bind function, regardless of which datatype it is for, is a pointer to
the sqlite3_stmt used previously in the sqlite3_prepare_v2() call. The second param-
eter is the index of the variable that you’re binding to. This is a one-indexed value, meaning
that the first question mark in the SQL statement has index 1, and each one after it is one
higher than the one to its left. The third parameter is always the value that should be sub-
stituted for the question mark. Most bind functions only take three parameters. A few, such
as those for binding text and binary data, have two additional parameters. The first is the
length of the data being passed in the third parameter. In the case of C strings, you can pass
-1 instead of the string’s length, and the function will use the entire string. In all other cases,
you have to tell it the length of the data being passed int. The final parameter is an optional
function callback in case you need to do any memory cleanup after the statement is exe-
cuted. Typically, such a function would be used to free memory allocated using malloc().

The syntax that follows the bind statements may seem a little odd, since we’re doing an
insert. When using bind variables, the same syntax is used for both queries and updates.
If the SQL string had a SQL query, rather than an update, we would need to call sqlite3_
step() called multiple times, until it returns SQLITE_DONE. Since this was an update, we call
it only once.

Setting Up a Project to Use SQLite3
We’ve covered the basics, so let’s see how this would work in practice. We’re going to retrofit
our Persistence application one more time, this time storing its data using SQLite3. We’re
going to use a single table and store the field values in four different rows of that table. We’ll
give each row a row number that corresponds to its field, so for example, the value from
field1 will get stored in the table with a row number of 1. Let’s get started.

SQLite 3 is accessed through a procedural API that provides interfaces to a number of C
function calls. To use this API, we’ll need to link our application to a dynamic library called
libsqlite3.dylib, located in /usr/lib on both Mac OS X and iPhone.

The process of linking a dynamic library into your project is exactly the same as that of link-
ing in a framework.

Go back to Xcode, and open the Persistence project, if it’s not still open. Select Frame-
works in the Groups & Files pane. Next, select Add to Project… from the Project menu

24594ch11.indd 371 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence372

now. Then, navigate to /Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/
iPhoneSimulatorX.Y.sdk/usr/lib, and find the file called libsqlite3.dylib. Note that X.Y in
iPhoneSimulatorX.Y stands for the major and minor release number of the SDK you are cur-
rently using. For example, if you are using SDK 3.0, you’d look for iPhoneSumulator3.0.

When you are prompted, make sure to uncheck the box labeled Copy items into destination
group’s folder (if needed). Also, make sure you change Reference Type to Relative to Current
SDK. Note that there may be several other entries in that directory that start with libsqlite3.
Be sure you select libsqlite3.dylib. It is an alias that always points to the latest version of the
SQLite3 library.

TIP
You can link directly to /usr/lib/libsqlite3.dylib if you choose a Reference Type of Absolute Path. This location
is a lot easier to remember, but absolute paths are more fragile and often discouraged. Relative paths are
safer and less likely to break in future versions, although in the case of libsqlite3.dylib, it’s probably safe to
link with an absolute path.

Next, make the following changes to PersistenceViewController.h:

#import <UIKit/UIKit.h>
#import “/usr/include/sqlite3.h”

#define kFilename @”dataarchive.plist”
#define kDataKey @”Data”
#define kFilename @”data.sqlite3”

@interface PersistenceViewController : UIViewController {
 UITextField *field1;
 UITextField *field2;
 UITextField *field3;
 UITextField *field4;

 sqlite3 *database;
}
@property (nonatomic, retain) IBOutlet UITextField *field1;
@property (nonatomic, retain) IBOutlet UITextField *field2;
@property (nonatomic, retain) IBOutlet UITextField *field3;
@property (nonatomic, retain) IBOutlet UITextField *field4;

- (NSString *)dataFilePath;
- (void)applicationWillTerminate:(NSNotification *)notification;
@end

24594ch11.indd 372 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 373

Once again, we change the filename so that we won’t be using the same file that we used in
the previous version and so that the file properly reflects the type of data it holds. We also
declare an instance variable, database, which will point to our application’s database.

Switch over to PersistenceViewController.m, and make the following changes:

#import “PersistenceViewController.h”
#import “FourLines.h”

@implementation PersistenceViewController
@synthesize field1;
@synthesize field2;
@synthesize field3;
@synthesize field4;

- (NSString *)dataFilePath {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 return [documentsDirectory stringByAppendingPathComponent:kFilename];
}

- (void)applicationWillTerminate:(NSNotification *)notification {
 FourLines *fourLines = [[FourLines alloc] init];
 fourLines.field1 = field1.text;
 fourLines.field2 = field2.text;
 fourLines.field3 = field3.text;
 fourLines.field4 = field4.text;

 NSMutableData *data = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];
 [archiver encodeObject:fourLines forKey:kDataKey];
 [archiver finishEncoding];
 [data writeToFile:[self dataFilePath] atomically:YES];
 [fourLines release];
 [archiver release];
 [data release];

 for (int i = 1; i <= 4; i++) {
 NSString *fieldName = [[NSString alloc]
 initWithFormat:@”field%d”, i];
 UITextField *field = [self valueForKey:fieldName];
 [fieldName release];

 char *errorMsg;
 char *update = “INSERT OR REPLACE INTO FIELDS (ROW, FIELD_DATA)
VALUES (?, ?);”;

24594ch11.indd 373 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence374

 sqlite3_stmt *stmt;
 if (sqlite3_prepare_v2(database, update, -1, &stmt, nil)
 == SQLITE_OK) {
 sqlite3_bind_int(stmt, 1, i);
 sqlite3_bind_text(stmt, 2, [field.text UTF8String], -1, NULL);
 }
 if (sqlite3_step(stmt) != SQLITE_DONE)
 NSAssert1(0, @”Error updating table: %s”, errorMsg);
 sqlite3_finalize(stmt);

 }
 sqlite3_close(database);
}
#pragma mark -
- (void)viewDidLoad {

 NSString *filePath = [self dataFilePath];
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath])
 {
 NSData *data = [[NSMutableData alloc]
 initWithContentsOfFile:[self dataFilePath]];
 NSKeyedUnarchiver *unarchiver =
 [[NSKeyedUnarchiver alloc] initForReadingWithData:data];
 FourLines *fourLines = [unarchiver decodeObjectForKey:kDataKey];
 [unarchiver finishDecoding];

 field1.text = fourLines.field1;
 field2.text = fourLines.field2;
 field3.text = fourLines.field3;
 field4.text = fourLines.field4;

 [unarchiver release];
 [data release];
 }
 if (sqlite3_open([[self dataFilePath] UTF8String], &database)
 != SQLITE_OK) {
 sqlite3_close(database);
 NSAssert(0, @”Failed to open database”);
 }

 char *errorMsg;
 NSString *createSQL = @”CREATE TABLE IF NOT EXISTS FIELDS
 (ROW INTEGER PRIMARY KEY, FIELD_DATA TEXT);”;
 if (sqlite3_exec (database, [createSQL UTF8String],
 NULL, NULL, &errorMsg) != SQLITE_OK) {
 sqlite3_close(database);
 NSAssert1(0, @”Error creating table: %s”, errorMsg);
 }

24594ch11.indd 374 6/24/09 11:16:08 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 375

 NSString *query = @”SELECT ROW, FIELD_DATA FROM FIELDS ORDER BY ROW”;
 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(database, [query UTF8String],
 -1, &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 int row = sqlite3_column_int(statement, 0);
 char *rowData = (char *)sqlite3_column_text(statement, 1);

 NSString *fieldName = [[NSString alloc]
 initWithFormat:@”field%d”, row];
 NSString *fieldValue = [[NSString alloc]
 initWithUTF8String:rowData];
 UITextField *field = [self valueForKey:fieldName];
 field.text = fieldValue;
 [fieldName release];
 [fieldValue release];
 }
 sqlite3_finalize(statement);
 }

 UIApplication *app = [UIApplication sharedApplication];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification
 object:app];
 [super viewDidLoad];
}
...

Let’s take a look at these changes. Hmm?

The first changes we made are in the
 applicationWillTerminate: method, where we
need to save our application data. Because the data
in the database is stored in a table, our applica-
tion’s data will look something like Table 11-1 when
stored.

To save the data, we loop through all four fields and
issue a separate command to update each row of
the database. Here’s our loop, and the first thing we do in the loop is craft a field name so we
can retrieve the correct text field outlet. Remember, valueForKey: allows you to retrieve a
property based on its name. We also declare a pointer to be used for the error message if we
encounter an error.

Table 11-1. Data Stored in the FIELDS
Table of the Database

ROW FIELD_DATA

1 Four score and seven years ago

2 our fathers brought forth on this

3 continent, a new nation,
conceived

4 in Liberty, and dedicated to the

24594ch11.indd 375 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence376

 for (int i = 1; i <= 4; i++)
 {
 NSString *fieldName = [[NSString alloc]
 initWithFormat:@”field%d”, i];
 UITextField *field = [self valueForKey:fieldName];

 char *errorMsg;

We craft an INSERT OR REPLACE SQL statement with two bind variables. The first represents
the row that’s being stored; the second is for the actual string value to be stored. By using
INSERT OR REPLACE instead of the more standard INSERT, we don’t have to worry about
whether a row already exists or not.

 char *update = “INSERT OR REPLACE INTO FIELDS (ROW, FIELD_DATA)
VALUES (?, ?);”;

Next, we declare a pointer to a statement, then prepare our statement with the bind vari-
ables, and bind values to both of the bind variables:

 sqlite3_stmt *stmt;
 if (sqlite3_prepare_v2(database, update, -1, &stmt, nil)
 == SQLITE_OK) {
 sqlite3_bind_int(stmt, 1, i);
 sqlite3_bind_text(stmt, 2, [field.text UTF8String], -1, NULL);
 }

Then we call sqlite3_step to execute the update, check to make sure it worked, and then
finalize the statement and close the database:

 if (sqlite3_step(stmt) != SQLITE_DONE)
 NSAssert1(0, @”Error updating table: %s”, errorMsg);
 sqlite3_finalize(stmt);
 }
 sqlite3_close(database);

 This statement will insert our data into the database if it’s not already there, or it will update
the existing row whose row number matches if there already is one:

 NSString *update = [[NSString alloc] initWithFormat:
 @”INSERT OR REPLACE INTO FIELDS (ROW, FIELD_DATA)
 VALUES (%d, ‘%@’);”, i, field.text];

Next, we execute the SQL INSERT OR REPLACE against our database:

 char *errorMsg;
 char *update = “INSERT OR REPLACE INTO FIELDS (ROW, FIELD_DATA)
VALUES (?, ?);”;

24594ch11.indd 376 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 377

 sqlite3_stmt *stmt;
 if (sqlite3_prepare_v2(database, update, -1, &stmt, nil)
 == SQLITE_OK) {
 sqlite3_bind_int(stmt, 1, i);
 sqlite3_bind_text(stmt, 2, [field.text UTF8String], -1, NULL);
 }
 if (sqlite3_step(stmt) != SQLITE_DONE)
 NSAssert1(0, @”Error updating table: %s”, errorMsg);
 sqlite3_finalize(stmt);

Notice that we’ve used an assertion here if we encountered an error. We use assertions rather
than exceptions or manual error checking, because this condition should only happen if we,
the developers, make a mistake. Using this assertion macro will help us debug our code, and
it can be stripped out of our final application. If an error condition is one that a user might
reasonably experience, you should probably use some other form of error checking.

Once we’re done with the loop, we close the database, and we’re finished with this method’s
changes:

 sqlite3_close(database);

The only other new code is in the viewDidLoad method. The first thing we do is open the
database. If we hit a problem opening the database, we close it and raise an assertion:

 if (sqlite3_open([[self dataFilePath] UTF8String], &database)
 != SQLITE_OK) {
 sqlite3_close(database);
 NSAssert(0, @”Failed to open database”);
 }

Next, we have to make sure that we have a table to hold our data. We can use SQL CREATE
TABLE to do that. By specifying IF NOT EXISTS, we prevent the database from overwrit-
ing existing data. If there is already a table with the same name, this command quietly exits
without doing anything, so it’s safe to call every time our application launches without
explicitly checking to see if a table exists.

 char *errorMsg;
 NSString *createSQL = @”CREATE TABLE IF NOT EXISTS FIELDS
 (ROW INTEGER PRIMARY KEY, FIELD_DATA TEXT);”;
 if (sqlite3_exec (database, [createSQL UTF8String], NULL, NULL,
 &errorMsg) != SQLITE_OK) {
 sqlite3_close(database);
 NSAssert1(0, @”Error creating table: %s”, errorMsg);
 }

24594ch11.indd 377 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence378

Finally, we need to load our data. We do this using a SQL SELECT statement. In this simple
example, we create a SQL SELECT that requests all the rows from the database and ask
SQLite3 to prepare our SELECT. We also tell SQLite3 to order the rows by the row number so
that we always get them back in the same order. Absent this, SQLite3 will return the rows in
the order in which they are stored internally.

 NSString *query = @”SELECT ROW, FIELD_DATA FROM FIELDS ORDER BY ROW”;
 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(database, [query UTF8String],
 -1, &statement, nil) == SQLITE_OK) {

Then, we step through each of the returned rows:

 while (sqlite3_step(statement) == SQLITE_ROW) {

We grab the row number and store it in an int, and then we grab the field data as a C string:

 int row = sqlite3_column_int(statement, 0);
 char *rowData = (char *)sqlite3_column_text(statement, 1);

Next, we create a field name based on the row number (e.g., field1 for row 1), convert the C
string to an NSString, and use that to set the appropriate field with the value retrieved from
the database:

 NSString *fieldName = [[NSString alloc]
 initWithFormat:@”field%d”, row];
 NSString *fieldValue = [[NSString alloc]
 initWithUTF8String:rowData];
 UITextField *field = [self valueForKey:fieldName];
 field.text = fieldValue;

Finally, we do some memory cleanup, and we’re all done:

 [fieldName release];
 [fieldValue release];
 }
 }

Why don’t you compile and run and try it out? Enter some data, and press the iPhone simu-
lator’s home button. Then, relaunch the Persistence application, and on launch, that data
should be right where you left it. As far as the user is concerned, there’s absolutely no dif-
ference between the four different versions of this application, but each version uses a very
different persistence mechanism.

24594ch11.indd 378 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 379

Using Core Data
When we wrote the first edition of this book, we included a section in the first chapter listing
the things that were available in Cocoa that weren’t yet available in Cocoa Touch. One of the
more noteworthy absences from the iPhone SDK prior to 3.0 was Core Data, Apple’s tool for
designing data models visually. When Apple confirmed that iPhone SDK 3 would have full
support for Core Data, there was much rejoicing in the iPhone developer community.

Core Data is a robust, full-featured persistence tool, and a full discussion of it is beyond the
scope of this chapter. We will, however, show you how to use Core Data to re-create the
same persistence you’ve seen in our Persistence application. For a more comprehensive cov-
erage of Core Data, check out More iPhone 3 Development by Dave Mark and Jeff LaMarche
(Apress, 2009), which devotes several chapters to Core Data.

In Xcode, create a new project. This time, select the Window-based Application template, but
don’t click the Choose… button just yet. If you look in the lower-right pane of the new proj-
ect assistant, you should see a checkbox labeled Use Core Data for storage (see Figure 11-5).
There’s a certain amount of complexity involved in adding Core Data to an existing project,
so Apple has kindly provided this option with some application project templates to do
much of the work for you.

Figure 11-5. Some project templates, including Window-based Application,
offer the option to use Core Data.

24594ch11.indd 379 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence380

Check that checkbox, and then click the Choose… button. When prompted, enter a project
name of Core Data Persistence. Before we move on to our code, let’s take a look at the project
window. There’s some new stuff here you’ve not seen before. Expand both the Classes and
Resources folders (see Figure 11-6).

Figure 11-6. Our project template with the files needed for Core Data

Entities and Managed Objects
Of course, we have a bunch of files you’re already familiar with: an application delegate, a
MainWindow.xib, and an info property list. But, there’s another file in the Resources folder
called Core_Data_Persistence.xcdatamodel. That is our data model. Core Data lets us design
our data models visually, without writing code. Single-click that file now, and you will be pre-
sented with the data model editor (see Figure 11-7). You may want to expand your Xcode
window and hide the detail pane (⇧⌘E) while working with the data model editor.

24594ch11.indd 380 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 381

Figure 11-7. Core Data’s data model editor. This is where you an create and edit data models.

The traditional way to create data models in Cocoa is to create subclasses of NSObject and
conform them to NSCoding and NSCopying so that they can be archived, as we did earlier in
this chapter. Core Data uses a fundamentally different approach. Instead of classes, you cre-
ate entities here in the data model editor, and then in your code, create managed objects
from those entities.

TIP
The terms “entity” and “managed object” can be a little confusing, since both refer to data model objects.
The term “entity” refers to the description of an object while “managed object” is used to refer to actual
concrete instances of that entity created at runtime. So, in the data model editor, you create entities, but
in your code, you will create and retrieve managed objects. The distinction between entities and managed
objects is similar to the distinction between a class and instances of that class.

An entity is made up of properties. There are four types of properties: attributes, relation-
ships, fetched properties, and fetch requests.

An attribute serves the same function in a core data entity as an instance variable does in
an objective-C class. They both hold the data.

24594ch11.indd 381 6/24/09 11:16:09 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence382

As the name implies, a relationship defines the relationship between entities. For example,
suppose you wanted to define a Person entity. You might start by defining a few attributes,
like hairColor, eyeColor, height, and weight. You might define address attributes, like
state and ZIP code, or you might embed those in a separate, HomeAddress entity. Using
this latter approach, you’d then want to create a relationship between a Person and a
 HomeAddress.

Relationships can be to one and to many. The relationship from a Person to a HomeAddress
is probably “to one,” since most people only have a single home address. The relationship
from HomeAddress to Person might be “to many,” since there may be more than one Person
living at that HomeAddress.

A fetched property is an alternative to a relationship. The main difference between
them is in the way they affect loading. For example, if a Person has a relationship with a
 HomeAddress, when the Person is loaded, the HomeAddress will be loaded, too. Alterna-
tively, if a Person references HomeAddress as a fetched property, when the Person is loaded,
HomeAddress is not loaded, at least not until HomeAddress is accessed. Can you say “lazy
loading”?

A fetch request is a predefined query. For example, you might say, “Give me every Person
whose eyeColor is blue.”

Typically, attributes, relationships, and fetched properties are defined using Xcode’s data
model editor. Fetch requests can be just as easily defined in the data model editor or in your
code.

In our Core Data Persistence application, we’ll build a simple entity so you can get a sense of
how this all works together. For more detail on Core Data, check out the extensive coverage
in More iPhone 3 Development.

Key-Value Coding
In your code, instead of using accessors and mutators, you will use key-value coding to
set properties or retrieve their existing values. Key-value coding may sound intimidating,
but it’s something you’ve already used quite a bit in this book. Every time we’ve used
 NSDictionary, for example, we were using key-value coding because every object in a dic-
tionary is stored under a unique key value. The key-value coding used by Core Data is a bit
more complex than that used by NSDictionary, but the basic concept is the same.

When working with a managed object, the key you will use to set or retrieve a property’s
value is the name of the attribute you wish to set. So, to retrieve the value stored in the attri-
bute called name from a managed object, you would call:

 NSString *name = [myManagedObject valueForKey:@”name”];

24594ch11.indd 382 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 383

Similarly, to set a new value for a managed object’s property, you would do this:

 [myManagedObject setValue:@”Martha Stewart” forKey:@”name”];

Putting It All in Context
So, where do these managed objects live? They live in something called a persistent store,
which is sometimes also referred to as a backing store. Persistent stores can take several
different forms. By default, a Core Data application implements a backing store as an SQLite
database stored in the application’s documents directory. Even though your data is stored
via SQLite, classes in the Core Data framework do all the work associated with loading and
saving your data. If you use Core Data, you won’t need to write any SQL statements. You just
work with objects, and Core Data figures out what it needs to do behind the scenes. In addi-
tion to SQLite, backing stores can also be implemented as binary flat files. There’s also a third
option to create an in-memory store, which you might use if writing a caching mechanism,
but it doesn’t save data beyond the end of the current session. In almost all situations, you
should just leave it as the default and use SQLite as your persistent store.

Although most applications will have only one persistent store, it is possible to have multiple
persistent stores within the same application. If you’re curious about how the backing store
is created and configured, you can look right in your Xcode project at the file Core_Data_
PersistenceAppDelegate.m. The Xcode project template, we chose provided us with all the
code needed to set up a single persistent store for our application.

Other than creating it (which is handled for us in our application delegate), we gener-
ally won’t work with our persistent store directly, but rather will use something called a
 managed object context, often just referred to as a context. The context intermediates
access to the persistent store and maintains information about what properties have
changed since the last time an object was saved. The context also registers all changes with
the undo manager, meaning that you always have the ability to undo a single change or roll
back all the way to the last time data was saved. You can have multiple contexts pointing to
the same persistent store, though most iPhone applications will only use one. You can find
out more about using multiple contexts and the undo manager in More iPhone 3 Develop-
ment as well.

Many core data calls require an NSManagedObjectContext as a parameter, or have to be
executed against a context. With the exception of very complicated, multithreaded iPhone
applications, you can just use the managedObjectContext property from your application
delegate, which is a default context that gets created for you automatically, also courtesy of
the Xcode project template.

24594ch11.indd 383 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence384

NOTE
You may notice that, in addition to a managed object context and a persistent store coordinator, the
provided application delegate also contains an instance of NSManagedObjectModel. This class is
responsible for loading and representing, at runtime, the data model you will create using the data model
editor in Xcode. You generally won’t have to interact directly with that class. This class is used behind the
scenes by the other Core Data classes so they can identify what entities and properties you’ve defined in
your data model. As long as you create your data model using the provided file, there’s no need to worry
about this class at all.

Creating New Managed Objects
Creating a new instance of a managed object is pretty easy, though not quite as straightfor-
ward as creating a normal object instance using alloc and init. Instead, you use a factory
method on a class called NSEntityDescription. Instances of this class represent a single
entity in memory. Remember: entities are like classes. They are a description of an object,
and define what properties a particular entity has.

To create a new object, we do this:

theLine = [NSEntityDescription
 insertNewObjectForEntityForName:@”EntityName”
 inManagedObjectContext:context];

The method is called insertNewObjectForEntityForName:inManagedObjectContext:
because, in addition to creating the object, it inserts the newly create object into the context
and then returns that object autoreleased. After this call, the object exists in the context but
is not yet part of the persistent store. The object will get added to the persistent store the
next time the managed object context’s save: method is called.

Retrieving Managed Objects
To retrieve managed objects from the persistent store, you create a fetch request and pro-
vide that request with an NSEntityDescription that specifies the entity of the object or
objects you wish to retrieve. Here is an example that creates a fetch request:
NSFetchRequest *request = [[NSFetchRequest alloc] init];
NSEntityDescription *entityDescr = [NSEntityDescription
 entityForName:@”EntityName” inManagedObjectContext:context];
[request setEntity:entityDescr];

Optionally, you can also specify criteria for a fetch request using the NSPredicate class. A
predicate is similar to the SQL where clause and allows you to define the criteria used to
determine the results of your fetch request.

24594ch11.indd 384 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 385

NOTE
Learn Objective-C on the Mac by Mark Dalrymple and Scott Knaster (Apress, 2008) has an entire chapter
devoted to the use of NSPredicate.

 Here is a simple example of a predicate:

NSPredicate *pred = [NSPredicate predicateWithFormat:@”(name = %@)”,
 nameString];
[request setPredicate: pred];

The predicate created by the first line of code would tell a fetch request that, instead of
retrieving all managed objects for the specified entity, retrieves just those where the name
property is set to the value currently stored in the nameString variable. So, if nameString
were an NSString that held the value @”Bob”, we would be telling the fetch request to only
bring back managed objects that have a name property set to “Bob”. This is a simple example,
but predicates can be considerably more complex and can use Boolean logic to specify the
precise criteria you might need in most any situation.

After you’ve created your fetch request, provided it with an entity description, and option-
ally given it a predicate, you execute the fetch request using an instance method on
 NSManagedObjectContext:

NSError *error;
NSArray *objects = [context executeFetchRequest:request error:&error];
if (objects == nil) {
 // handle error
}

executeFetchRequest:error: will load the specified objects from the persistent store
and return them in an array. If an error is encountered, you will get a nil array, and the error
pointer you provided will point to an NSError object that describes the specific problem. If
there was no error, you will get a valid array, though it may not have any objects in it, since
it is possible that there are none that meet the specified criteria. From this point on, any
changes you make to the managed objects returned in that array will be tracked by the
managed object context you executed the request against and saved when you send that
context a save: message.

Let’s take Core Data for a spin now.

Designing the Data Model
Let’s return our attention to Xcode and create our data model. Single-click Persistence_Core_
Data.xcdatamodel to open Xcode’s data model editor. The upper-left pane of the data model

24594ch11.indd 385 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence386

editor is called the entity pane because it lists all the entities that are currently in your data
model. It’s an empty list now, because we haven’t created any yet (see Figure 11-8).

Remedy that by clicking the plus icon in the
lower-left corner of the entity pane, which will
create and select an entity titled Entity. If you
look in the bottom pane of the data model editor,
you’ll notice that it’s no longer empty (see Figure
11-9)! As you build your data model using the
top three panes (collectively called the browser
view), a graphical representation of your data
model is shown in the bottom portion of the
screen, which is called the diagram view. If you
prefer working graphically, you can actually build
your entire model in the diagram view. Right-
clicking the background of the diagram view will
bring up a contextual menu that will allow you to
add entities and change the diagram view’s appearance. Right-clicking an entity will bring
up a menu that allows you to add properties to the selected entity. We’re going to stick with
the browser view in this chapter because it’s easier to explain, but when you’re creating your
own data models, feel free to work in the diagram view if that approach suits you better.

Figure 11-9. Xcode’s data model editor’s diagram view shows an editable graphical
representation of your data model.

Figure 11-8. The upper left-pane of the
data model editor is the entity pane. Click-
ing the plus icon in the lower left corner
adds an entity

24594ch11.indd 386 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 387

The upper-right pane of the data model editor is
called the detail pane. Part of the reason we had
you close Xcode’s detail pane a minute ago was
to avoid confusion caused by having two unre-
lated detail panes. Throughout the rest of the
chapter, when we refer to the detail pane, we’ll be
referring to the data model editor’s detail pane
(see Figure 11-10), not Xcode’s detail pane. The
data model editor’s detail pane allows you to edit
the currently selected entity or property.

At the moment, the detail pain shows informa-
tion about the entity we just added. Change the
Name field from Entity to Line. You can ignore
the other fields in the detail pane for now. Those
other fields will come into play when creating
more complex data models, like those discussed
in More iPhone 3 Development.

The data model editor’s upper-middle pane is the
property pane (see Figure 11-11). As its name
implies, the property pane allows you to add new
properties to your entity.

Notice that plus sign in the lower-left corner of
the property pane features a little black triangle.
If you click the triangle and hold the mouse
button down, a pop-up menu will appear, allow-
ing you to add an attribute, fetched property,
relationship, or fetch request to your entity (see
Figure 11-12).

Select Add Attribute from the menu that popped
up. A new attribute creatively named newAttrib-
ute should have just been added to your properties pane and selected. In the detail pane,
change the new attribute’s name from newAttribute to lineNum and change its Type from
Undefined to Integer 16, which turns this attribute into one that will hold an integer value. We
will be using this attribute to identify which of the four fields the managed object holds data
for. Since we only have four options, we selected the smallest integer type available.

There are three checkboxes below the Name field. The leftmost one, Optional, should cur-
rently be selected. Click it to deselect it; we don’t want this attribute to be optional. A line
that doesn’t correspond to a label on our interface is useless. Don’t worry about the other

Figure 11-10. The data model editor’s
detail pane, not to be confused with Xcode’s
detail pane

Figure 11-11. The property pane in Xcode’s
data model editor. This is where you can add
properties to the currently selected entity.

Figure 11-12. Clicking the plus icon in the
property pane brings up a menu of options.

24594ch11.indd 387 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence388

two checkboxes for now. Transient attributes are used to store nonstandard objects for
which there is no predefined attribute type. Selecting the Indexed checkbox will cause an
index in the underlying SQL database to get created on the field that holds this attribute’s
data.

Click the plus-icon, and select Add Attribute again, this time creating an attribute with the
name lineText and changing its Type to String. This attribute will hold the actual data from
the text field. Leave the Optional checkbox checked for this one; it is altogether possible that
the user won’t enter a value for a given field.

When you changed the Type to String, you’ll notice that additional options came up that
would let you set a default value or limit the length of the string. We won’t be using any of
those options for this application, but it’s nice to know they’re there.

Guess what? Your data model is done. That’s all there is to it. Core Data lets you point and
click your way to an application data model. Let’s finish building the application so we can
see how to use our data model from our code.

Creating the Persistence View and Controller
Because we selected the window-based application template, we weren’t provided with a
view controller. So single-click the Classes folder, and press ⌘N or select New File… from the
File menu to bring up the new file assistant. Select UIViewController subclass from the Cocoa
Touch Class heading, and name the file PersistenceViewController.m, making sure to have it
create PersistenceViewController.h as well. Also make sure to check the box that says With XIB
for user interface to have it create a nib file for you automatically. If PersistenceViewController.
xib was placed in your Classes folder, drag it down to the Resources folder so that our project
stays nice and organized.

Single-click PersistenceViewController.h, and make the following changes, which should look
very familiar to you:

#import <UIKit/UIKit.h>

@interface PersistenceViewController : UIViewController {
 UITextField *line1;
 UITextField *line2;
 UITextField *line3;
 UITextField *line4;
}
@property (nonatomic, retain) IBOutlet UITextField *line1;
@property (nonatomic, retain) IBOutlet UITextField *line2;
@property (nonatomic, retain) IBOutlet UITextField *line3;
@property (nonatomic, retain) IBOutlet UITextField *line4;
@end

24594ch11.indd 388 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 389

Save, and double-click PersistenceViewController.xib to open Interface Builder. Design the
view, and connect the outlets by following the instructions from earlier in this chapter in the
“Designing the Persistence Application View” section. Once you’re done, save the nib file,
and go back to Xcode.

In PersistenceViewController.m, insert the following code at the top of the file:

#import “PersistenceViewController.h”
#import “Core_Data_PersistenceAppDelegate.h”

@implementation PersistenceViewController
@synthesize line1;
@synthesize line2;
@synthesize line3;
@synthesize line4;
- (void)applicationWillTerminate:(NSNotification *)notification {
 Core_Data_PersistenceAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate managedObjectContext];
 NSError *error;
 for (int i = 1; i <= 4; i++) {
 NSString *fieldName = [NSString stringWithFormat:@”line%d”, i];
 UITextField *theField = [self valueForKey:fieldName];

 NSFetchRequest *request = [[NSFetchRequest alloc] init];

 NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@”Line”
 inManagedObjectContext:context];
 [request setEntity:entityDescription];
 NSPredicate *pred = [NSPredicate
 predicateWithFormat:@”(lineNum = %d)”, i];
 [request setPredicate:pred];

 NSManagedObject *theLine = nil;

 NSArray *objects = [context executeFetchRequest:request
 error:&error];

 if (objects == nil) {
 NSLog(@”There was an error!”);
 // Do whatever error handling is appropriate
 }
 if ([objects count] > 0)
 theLine = [objects objectAtIndex:0];
 else
 theLine = [NSEntityDescription

24594ch11.indd 389 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence390

 insertNewObjectForEntityForName:@”Line”
 inManagedObjectContext:context];

 [theLine setValue:[NSNumber numberWithInt:i] forKey:@”lineNum”];
 [theLine setValue:theField.text forKey:@”lineText”];

 [request release];
 }
 [context save:&error];
}

- (void)viewDidLoad {
 Core_Data_PersistenceAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate managedObjectContext];
 NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@”Line”
 inManagedObjectContext:context];
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity:entityDescription];

 NSError *error;
 NSArray *objects = [context executeFetchRequest:request error:&error];
 if (objects == nil) {
 NSLog(@”There was an error!”);
 // Do whatever error handling is appropriate
 }

 for (NSManagedObject *oneObject in objects) {
 NSNumber *lineNum = [oneObject valueForKey:@”lineNum”];
 NSString *lineText = [oneObject valueForKey:@”lineText”];

 NSString *fieldName = [NSString
 stringWithFormat:@”line%@”, lineNum];
 UITextField *theField = [self valueForKey:fieldName];
 theField.text = lineText;
 }
 [request release];

 UIApplication *app = [UIApplication sharedApplication];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification
 object:app];
 [super viewDidLoad];
}
...

24594ch11.indd 390 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 391

Then, insert the following code into the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.line1 = nil;
 self.line2 = nil;
 self.line3 = nil;
 self.line4 = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [line1 release];
 [line2 release];
 [line3 release];
 [line4 release];
 [super dealloc];
}
...

Let’s look at applicationWillTerminate: first. The first thing we do in that method is to
get a reference to our application delegate, which we then use to get the managed object
context that was created for us.

 Core_Data_PersistenceAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate managedObjectContext];

After that, we go into a loop that executes four times, one for each label.

 for (int i = 1; i <= 4; i++) {

We construct the name of one of the four fields by appending i to the word “line” and use
that to get a reference to the correct field using valueForKey:.

 NSString *fieldName = [NSString stringWithFormat:@”line%d”, i];
 UITextField *theField = [self valueForKey:fieldName];

Next, we create our fetch request:

 NSFetchRequest *request = [[NSFetchRequest alloc] init];

After that, we create an entity description that describes the Line entity we designed earlier
in the data model editor and that uses the context we retrieved from the application del-
egate. Once we create it, we feed it to the fetch request, so the request knows what type of
entity to look for.

24594ch11.indd 391 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence392

 NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@”Line”
 inManagedObjectContext:context];
 [request setEntity:entityDescription];

Next, we need to find out if there’s already a managed object in the persistent store that cor-
responds to this field, so we create a predicate that identifies the right object for the field:

 NSPredicate *pred = [NSPredicate
 predicateWithFormat:@”(lineNum = %d)”, i];
 [request setPredicate:pred];

After that, we declare a pointer to an NSManagedObject and set it to nil. We do this because
we don’t know yet if we’re going to load a managed object from the persistent store or
create a new one. We also declare an NSError that the system will use to notify us of the
specific nature of the problem if we get back a nil array.

 NSManagedObject *theLine = nil;
 NSError *error;

Next, we execute the fetch request against the context:

 NSArray *objects = [context executeFetchRequest:request
 error:&error];

Then, we check to make sure that objects is not nil. If it is nil, then there was an error and
we should do whatever error checking is appropriate for our application. For this simple
application, we’re just logging the error and moving on.

 if (objects == nil) {
 NSLog(@”There was an error!”);
 // Do whatever error handling is appropriate
 }

After that, we look to see if an object was returned that matched our criteria, and if there is
one, we load it. If there isn’t one, we create a new managed object to hold this field’s text.

 if ([objects count] > 0)
 theLine = [objects objectAtIndex:0];
 else
 theLine = [NSEntityDescription
 insertNewObjectForEntityForName:@”Line”
 inManagedObjectContext:context];

Then, we use key-value coding to set the line number and text for this managed object:

24594ch11.indd 392 6/24/09 11:16:10 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 393

 [theLine setValue:[NSNumber numberWithInt:i] forKey:@”lineNum”];
 [theLine setValue:theField.text forKey:@”lineText”];
 [request release];
 }

Finally, once we’re done looping, we tell the context to save its changes:

 [context save:&error];
}

Now, let’s look at the viewDidLoad method, which needs to see if there is any existing data
in the persistent store and, if there is, load the data in and populate the fields with it. We
start out the same way as the last method, by getting a reference to the application delegate
and using that to get a pointer to our application’s default context:

 Core_Data_PersistenceAppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate managedObjectContext];

Next, we create an entity description that describes our entity:

 NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@”Line”
 inManagedObjectContext:context];

The next order of business is to create a fetch request and pass it the entity description so it
knows what type of objects to retrieve:

 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity:entityDescription];

Since we want to retrieve all Line objects in the persistent store, we do not create a predi-
cate. By executing a request without a predicate, we’re telling the context to give us every
Line object in the store.

 NSError *error;
 NSArray *objects = [context executeFetchRequest:request error:&error];

We make sure we got a valid array back, and log it if we didn’t.

 if (objects == nil) {
 NSLog(@”There was an error!”);
 // Do whatever error handling is appropriate
 }

Next, we use fast enumeration to loop through the array of retrieved managed objects, pull
out the lineNum and lineText values from it, and use that information to update one of the
text fields on our user interface.

24594ch11.indd 393 6/24/09 11:16:11 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence394

 for (NSManagedObject *oneObject in objects) {
 NSNumber *lineNum = [oneObject valueForKey:@”lineNum”];
 NSString *lineText = [oneObject valueForKey:@”lineText”];

 NSString *fieldName = [NSString stringWithFormat:@”line%@”,
 lineNum];
 UITextField *theField = [self valueForKey:fieldName];
 theField.text = lineText;
 }
 [request release];

Then, just like with all the other applications in this chapter, we register to be notified when
the application is about to terminate so we can save any changes the user has made to the
data:

 UIApplication *app = [UIApplication sharedApplication];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)
 name:UIApplicationWillTerminateNotification
 object:app];
 [super viewDidLoad];

Making Persistence View Controller our Application’s
Root Controller
Because we used the window-based application template instead of the view-based appli-
cation template, we have one more step we need to take before our fancy new Core Data
application will work: We need to create an instance of PersistenceViewController to act
as our application’s root controller and add its view as a subview of our application’s main
window. Let’s do that now.

The first thing we need is an outlet to the view controller in our application delegate. Single-
click Core_Data_PersistenceAppDelegate.h, and make the following changes to declare that
outlet:

@class PersistenceViewController;
@interface Core_Data_PersistenceAppDelegate : NSObject
 <UIApplicationDelegate> {

 NSManagedObjectModel *managedObjectModel;
 NSManagedObjectContext *managedObjectContext;
 NSPersistentStoreCoordinator *persistentStoreCoordinator;

 UIWindow *window;
 PersistenceViewController *rootController;
}

24594ch11.indd 394 6/24/09 11:16:11 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence 395

- (IBAction)saveAction:sender;

@property (nonatomic, retain, readonly) NSManagedObjectModel
 *managedObjectModel;
@property (nonatomic, retain, readonly) NSManagedObjectContext
*managedObjectContext;
@property (nonatomic, retain, readonly) NSPersistentStoreCoordinator
*persistentStoreCoordinator;

@property (nonatomic, readonly) NSString *applicationDocumentsDirectory;

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet PersistenceViewController
 *rootController;

@end

To make the root controller’s view a subview of the application’s window so that the user can
interact with it, single-click Core_Data_PersistenceAppDelegate.m, and make the following
changes at the top of that file:

#import “Core_Data_PersistenceAppDelegate.h”
#import “PersistenceViewController.h”

@implementation Core_Data_PersistenceAppDelegate

@synthesize window;
@synthesize rootController;

#pragma mark -
#pragma mark Application lifecycle

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch
 [window addSubview:rootController.view];
 [window makeKeyAndVisible];
}
...

Finally, we need to go back to Interface Builder to create the instance of our root controller
and connect it to that outlet we just created. Double-click MainWindow.xib to launch Inter-
face Builder. Once it’s finished launching, drag a View Controller from the library, and drop it
onto the nib’s main window, the one titled MainWindow.xib. The new view controller’s icon
should still be selected (if it’s not, just single-click the icon called View Controller). Press ⌘4
to bring up the identity inspector, and change the underlying class from UIViewController

24594ch11.indd 395 6/24/09 11:16:11 AM

Download at Boykma.Com

CHAPTER 11: Basic Data Persistence396

to PersistenceViewController, which should cause its label to change from View Controller to
 Persistence View Controller. Next, control-drag from the icon labeled Core_Data_Persistence
App Delegate to the icon labeled Persistence View Controller, and select the rootController out-
let. Save the nib file, and go back to Xcode.

That’s it; we’re done. Build and run to make sure it works. The Core Data version of your
application should behave exactly the same as the previous versions.

And that’s all there is to it. It may seem that Core Data entails a lot of work and, for a simple
application like this, doesn’t offer much of an advantage. But in more complex applications,
Core Data can substantially decrease the amount of time you spend designing and writing
your data model.

Persistence Rewarded
You should now have a solid handle on four different ways of preserving your application
data between sessions—five ways if you include the user defaults that you learned how to
use in the previous chapter. We built an application that persisted data using property lists
and modified the application to save its data using object archives. We then made a change
and used the iPhone’s built-in SQLite3 mechanism to save the application data. Finally, we
rebuilt the same application using Core Data. These mechanisms are the basic building
blocks for saving and loading data in almost all iPhone applications.

Ready for more? Time to drag out your crayons, because in the next chapter, you’re going to
learn how to draw. Cool!

24594ch11.indd 396 6/24/09 11:16:11 AM

Download at Boykma.Com

Chapter 12

397

e
Drawing with
Quartz and OpenGL

very application we’ve built so far has been constructed from views and con-
trols provided to us as part of the UIKit framework. You can do an awful lot
with these stock components, and a great many application interfaces can be
constructed using only these stock objects. Some applications, however, can’t
be fully realized without looking further. For instance, at times, an applica-
tion needs to be able to do custom drawing. Fortunately for us, we have not
one but two separate libraries we can call on for our drawing needs: Quartz
2D, which is part of the Core Graphics framework, and OpenGL ES, which is
a cross-platform graphics library. OpenGL ES is a slimmed-down version of
another cross-platform graphic library called OpenGL. OpenGL ES is a subset
of OpenGL designed specifically for embedded systems such as the iPhone
(hence the letters “ES”). In this chapter, we’ll explore both of these powerful
graphics environments. We’ll build sample applications in both and try to get
a sense of which environment to use when.

Two Views of a Graphical World
Although Quartz and OpenGL overlap a lot, there are distinct differences
between them. Quartz is a set of functions, datatypes, and objects designed
to let you draw directly into a view or to an image in memory.

Quartz treats the view or image that is being drawn into as a virtual canvas
and follows what’s called a painter’s model, which is just a fancy way to say
that that drawing commands are applied in much the same way as paint is
applied to a canvas. If a painter paints an entire canvas red, and then paints

24594ch12.indd 397 6/25/09 6:06:09 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL398

the bottom half of the canvas blue, the canvas will be half red and half either blue or purple.
Blue if the paint is opaque; purple if the paint is semitransparent.

Quartz’s virtual canvas works the same way. If you paint the whole view red, and then paint
the bottom half of the view blue, you’ll have a view that’s half red and half either blue or
purple, depending on whether the second drawing action was fully opaque or partially
transparent. Each drawing action is applied to the canvas on top of any previous drawing
actions.

On the other hand, OpenGL ES, is implemented as a state machine. This concept is some-
what more difficult a concept to grasp, because it doesn’t resolve to a simple metaphor like
painting on a virtual canvas. Instead of letting you take actions that directly impact a view,
window, or image, OpenGL ES maintains a virtual three-dimensional world. As you add
objects to that world, OpenGL keeps track of the state of all objects. Instead of a virtual can-
vas, OpenGL ES gives you a virtual window into its world. You add objects to the world and
define the location of your virtual window with respect to the world. OpenGL then draws
what you can see through that window based on the way it is configured and where the var-
ious objects are in relation to each other. This concept is a bit abstract, so if you’re confused,
don’t worry; it’ll make more sense as we make our way through this chapter’s code.

Quartz is relatively easy to use. It provides a variety of line,
shape, and image drawing functions. Though easy to use,
Quartz 2D is limited to two-dimensional drawing. Although
many Quartz functions do result in drawing that takes
advantage of hardware acceleration, there is no guaran-
tee that any particular action you take in Quartz will be
 accelerated.

OpenGL, though considerably more complex and conceptu-
ally more difficult, offers a lot more power. It has tools for
both two-dimensional and three-dimensional drawing and
is specifically designed to take full advantage of hardware
acceleration. It’s also extremely well suited to writing games
and other complex, graphically intensive programs.

This Chapter’s Drawing
 Application
Our next application is a simple drawing program (see
 Figure 12-1). We’re going to build this application twice,
once using Quartz 2D and once using OpenGL ES, so you
get a real feel for the difference between the two.

Figure 12-1. Our chapter’s
simple drawing application in
action

24594ch12.indd 398 6/25/09 6:06:10 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 399

The application features a bar across the top and one across the bottom, each with a seg-
mented control. The control at the top lets you change the drawing color, and the one at
the bottom lets you change the shape to be drawn. When you touch and drag, the selected
shape will be drawn in the selected color. To minimize the application’s complexity, only one
shape will be drawn at a time.

The Quartz Approach to Drawing
When using Quartz to do your drawing, you’ll usually add the drawing code to the view
doing the drawing. For example, you might create a subclass of UIView and add Quartz
function calls to that class’s drawRect: method. The drawRect: method is part of the
 UIView class definition and gets called every time a view needs to redraw itself. If you insert
your Quartz code in drawRect:, that code will get called then the view redraws itself.

Quartz 2D’s Graphics Contexts
In Quartz 2D, as in the rest of Core Graphics, drawing happens in a graphics context, usually
just referred to as a context. Every view has an associated context. When you want to draw
in a view, you’ll retrieve the current context, use that context to make various Quartz draw-
ing calls, and let the context worry about rendering your drawing onto the view.

This line of code retrieves the current context:

CGContextRef context = UIGraphicsGetCurrentContext();

NOTE
Notice that we’re using Core Graphics C functions, rather than Objective-C objects, to do our drawing. Both
Core Graphics and OpenGL are C-based APIs, so most of the code we write in this part of the chapter will
consist of C function calls.

Once you’ve defined your graphics context, you can draw into it by passing the context to a
variety of Core Graphics drawing functions. For example, this sequence will draw a 2-pixel-
wide line in the context:

CGContextSetLineWidth(context, 2.0);
CGContextSetStrokeColorWithColor(context, [UIColor redColor].CGColor);
CGContextMoveToPoint(context, 100.0f, 100.0f);
CGContextAddLineToPoint(context, 200.0f, 200.0f);
CGContextStrokePath(context);

The first call specifies that any drawing we do should create a line that’s 2 pixels wide. We
then specify that the stroke color should be red. In Core Graphics, two colors are associated

24594ch12.indd 399 6/25/09 6:06:10 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL400

with drawing actions: the stroke color and the fill color. The stroke color is used in drawing
lines and for the outline of shapes, and the fill color is used to fill in shapes.

Contexts have a sort of invisible “pen” associated with them that does the line drawing.
When you call CGContextMoveToPoint(), you move that invisible pen to a new location,
without actually drawing anything. By doing this, we are indicating that the line we are
about to draw will start at position (100, 100) (see the explanation of positioning in the
next section). The next function actually draws a line from the current pen location to the
specified location, which will become the new pen location. When we draw in Core Graph-
ics, we’re not drawing anything you can actually see. We’re creating a shape, a line, or some
other object, but it contains no color or anything to make it visible. It’s like writing in invis-
ible ink. Until we do something to make it visible, our line can’t be seen. So, the next step is
tell Quartz to draw the line using CGContextStrokePath(). This function will use the line
width and the stroke color we set earlier to actually color (or “paint”) the line and make it
 visible.

The Coordinates System
In the previous chunk of code, we passed a pair of floating-point numbers as parameters
to CGContextMoveToPoint() and CGContextLineToPoint(). These numbers represent
positions in the Core Graphics coordinates system. Locations in this coordinate system are
denoted by their x and y coordinates, which we usually represent as (x, y). The upper-left
corner of the context is (0, 0). As you move down, y increases. As you move to the right, x
increases.

In that last code snippet, we drew a diagonal line from (100, 100) to (200, 200), which would
draw a line that looked like the one shown in Figure 12-2.

The coordinate system is one of the gotchas in drawing with Quartz, because Quartz’s coor-
dinate system is flipped from what many graphics libraries use and from what is usually
taught in geometry classes. In OpenGL ES, for example, (0, 0) is in the lower-left corner and
as the y coordinate increases, you move toward the top of the context or view, as shown in
Figure 12-3. When working with OpenGL, you have to translate the position from the view’s
coordinate system to OpenGL’s coordinate system. That’s easy enough to do, and you’ll see
how it’s done when we get into working with OpenGL later in the chapter.

To specify a point in the coordinate system, some Quartz functions require two floating-
point numbers as parameters. Other Quartz functions ask for the point to be embedded in
a CGPoint, a struct that holds two floating-point values, x and y. To describe the size of a
view or other object, Quartz uses CGSize, a struct that also holds two floating-point values,
width and height. Quartz also declares a datatype called CGRect, which is used to define
a rectangle in the coordinate system. A CGRect contains two elements, a CGPoint called

24594ch12.indd 400 6/25/09 6:06:10 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 401

 origin that identifies the top left of the rectangle and a CGSize called size that identifies
the width and height of the rectangle.

(10,10)

(20,20)

Origin

Figure 12-2. Drawing a line in the view’s coordinate system

(10,10)

(20,20)

Origin

Figure 12-3. In many graphics libraries, including OpenGL,
drawing from (10, 10) to (20, 20) would produce a line that
looks like this instead of the line in Figure 12-2.

24594ch12.indd 401 6/25/09 6:06:10 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL402

Specifying Colors
An important part of drawing is color, so understanding the way colors work on the iPhone
is important. This is one of the areas where the UIKit does provide an Objective-C class:
UIColor. You can’t use a UIColor object directly in Core Graphic calls, but since UIColor is
just a wrapper around CGColor (which is what the Core Graphic functions require), you can
retrieve a CGColor reference from a UIColor instance by using its CGColor property, some-
thing we did earlier in this code snippet:

CGContextSetStrokeColorWithColor(context, [UIColor redColor].CGColor);

We created a UIColor instance using a convenience method called redColor, and then
retrieved its CGColor property and passed that into the function.

A Bit of Color Theory for Your iPhone’s Display
In modern computer graphics, a very common way to represent colors is to use four compo-
nents: red, green, blue, and alpha. In Quartz 2D, these values are of type CGFloat (which, on
the iPhone, is a four byte floating-point value, the same as float) and hold a value between
0.0 and 1.0.

NOTE
A floating-point value that is expected to be in the range 0.0 to 1.0 is often referred to as a clamped
floating-point variable, or sometimes just a clamp.

The first three are fairly easy to understand, as they represent the additive primary colors
or the RGB color model (see Figure 12-4). Combining these three colors in different pro-
portions results in different colors. If you add together light of these three shades in equal
proportions, the result will appear to the eye as either white or a shade of gray depending
on the intensity of the light mixed. Combining the three additive primaries in different pro-
portions, gives you range of different colors, referred to as a gamut.

In grade school, you probably learned that the primary colors are red, yellow, and blue.
These primaries, which are known as the historical subtractive primaries or the RYB color
model, have little application in modern color theory and are almost never used in com-
puter graphics. The color gamut of the RYB color model is extremely limited, and this model
doesn’t lend itself easily to mathematical definition. As much as we hate to tell you that your
wonderful third grade art teacher, Mrs. Smedlee, was wrong about anything, well, in the con-
text of computer graphics, she was. For our purposes, the primary colors are red, green, and
blue, not red, yellow, and blue.

24594ch12.indd 402 6/25/09 6:06:11 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 403

Figure 12-4. A simple representation of the additive
primary colors that make up the RGB color model

More Than Color Meets the Eye
In addition to red, green, and blue, both Quartz 2D and OpenGL ES use another color com-
ponent, called alpha, which represents how transparent a color is. Alpha is used, when
drawing one color on top of another color, to determine the final color that gets drawn. With
an alpha of 1.0, the drawn color is 100 percent opaque and obscures any colors beneath it.
With any value less than 1.0, the colors below will show through and mix. When an alpha
component is used, the color model is sometimes referred to as the RGBA color model,
although technically speaking, the alpha isn’t really part of the color; it just defines how the
color will interact with other colors when it is drawn.

Although the RGB model is the most commonly used in computer graphics, it is not the only
color model. Several others are in use, including hue, saturation, value (HSV); hue, satura-
tion, lightness (HSL); cyan, magenta, yellow, key (CMYK), which is used in four-color offset
printing; and grayscale. To make matters even more confusing, there are different versions of
some of these, including several variants of the RGB color space. Fortunately, for most opera-
tions, we don’t have to worry about the color model that is being used. We can just pass the
CGColor from our UIColor object and Core Graphics will handle any necessary conversions.
If you use UIColor or CGColor when working with OpenGL ES, it’s important to keep in
mind that they support other color models, because OpenGL ES requires colors to be speci-
fied in RGBA.

UIColor has a large number of convenience methods that return UIColor objects initialized
to a specific color. In our previous code sample, we used the redColor method to get a color

24594ch12.indd 403 6/25/09 6:06:11 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL404

initialized to red. Fortunately for us, the UIColor instances created by these convenience
methods all use the RGBA color model.

If you need more control over color, instead of using one of those convenience methods
based on the name of the color, you can create a color by specifying all four of the compo-
nents. Here’s an example:

return [UIColor colorWithRed:1.0f green:0.0f blue:0.0f alpha:1.0f];

Drawing Images in Context
Quartz 2D allows you to draw images directly into a context. This is another example of
an Objective-C class (UIImage) that you can use as an alternative to working with a Core
 Graphics data structure (CGImage). The UIImage class contains methods to draw its image
into the current context. You’ll need to identify where the image should appear in the con-
text by specifying either a CGPoint to identify the image’s upper-left corner or a CGRect to
frame the image—resized, if necessary, to fit the frame. You can draw a UIImage into the
 current context like so:

CGPoint drawPoint = CGPointMake(100.0f, 100.0f);
[image drawAtPoint:drawPoint];

Drawing Shapes: Polygons, Lines, and Curves
Quartz 2D provides a number of functions to make it easier to create complex shapes. To
draw a rectangle or a polygon, you don’t have to calculate angles, draw lines, or do any math
at all, really. You can just call a Quartz function to do the work for you. For example, to draw
an ellipse, you define the rectangle into which the ellipse needs to fit and let Core Graphics
do the work:

CGRect theRect = CGMakeRect(0,0,100,100);
CGContextAddEllipseInRect(context, theRect);
CGContextDrawPath(context, kCGPathFillStroke);

There are similar methods for rectangles. There are also methods that let you create more
complex shapes, such as arcs and Bezier paths. To learn more about arcs and Bezier paths
in Quartz, check out the Quartz 2D Programming Guide in the iPhone Dev Center at
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/

drawingwithquartz2d/ or in Xcode’s online documentation.

Quartz 2D Tool Sampler: Patterns, Gradients, and Dash Patterns
Although not as expansive as OpenGL, Quartz 2D does offer quite an impressive array of
tools. Though many of these tools are beyond the scope of this book, you should know they
exist. For example, Quartz 2D supports the filling of polygons with gradients, not just solid

24594ch12.indd 404 6/25/09 6:06:12 PM

Download at Boykma.Com

http://developer.apple.com/documentation/GraphicsImaging/Conceptual/

CHAPTER 12: Drawing with Quartz and OpenGL 405

colors, and supports not only solid lines but an assortment of dash patterns. Take a look at
the screen shots in Figure 12-5, which are taken from Apple’s QuartzDemo sample code, to
see a sampling of what Quartz 2D can do for you.

Figure 12-5. Some examples of what Quartz 2D can do, from the Quartz Demo sample project
 provided by Apple

24594ch12.indd 405 6/25/09 6:06:12 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL406

Now that you have a basic understanding of how Quartz 2D works and what it is capable of,
let’s try it out.

Building the QuartzFun Application
In Xcode, create a new project using the view-based application template, and call it Quartz-
Fun. Once it’s created, expand the Classes and Resources folders, and single-click the Classes
folder so we can add our classes. The template already provided us with an application dele-
gate and a view controller. We’re going to be executing our custom drawing in a view, so we
need to create a subclass of UIView where we’ll do the drawing by overriding the drawRect:
method. Create a new Cocoa Touch Class file, and select Objective-C class and then a UIView
for Subclass of. Just to repeat, use a Subclass of UIView and not NSObject as we’ve done in the
past. Call the file QuartzFunView.m, and be sure to create the header as well.

We’re going to define some constants, as we’ve done several times, but this time, our con-
stants are going to be needed by more than one class and don’t relate to one specific class.
We’re going to create a header file just for the constants, so create a new file, selecting the
Empty File template from the Other heading and calling it Constants.h.

We have two more files to go. If you look at Figure 12-1, you can see that we offer an option
to select a random color. UIColor doesn’t have a method to return a random color, so
we’ll have to write code to do that. We could, of course, put that code into our controller
class, but because we’re savvy Objective-C programmers, we’re going to put the code into
a category on UIColor. Create two more files using the Empty File template, calling one
UIColor-Random.h and the other UIColor-Random.m. Alternatively, use the NSObject subclass
template to create UIColor-Random.m, and let the template create UIColor-Random.h for you
automatically; then, delete the contents of the two files.

Creating a Random Color
Let’s tackle the category first. In UIColor-Random.h, place the following code:

#import <UIKit/UIKit.h>

@interface UIColor(Random)
+(UIColor *)randomColor;
@end

Now, switch over to UIColor-Random.m, and add this:

#import "UIColor-Random.h"

@implementation UIColor(Random)
+(UIColor *)randomColor {
 static BOOL seeded = NO;

24594ch12.indd 406 6/25/09 6:06:12 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 407

 if (!seeded) {
 seeded = YES;
 srandom(time(NULL));
 }
 CGFloat red = (CGFloat)random()/(CGFloat)RAND_MAX;
 CGFloat blue = (CGFloat)random()/(CGFloat)RAND_MAX;
 CGFloat green = (CGFloat)random()/(CGFloat)RAND_MAX;
 return [UIColor colorWithRed:red green:green blue:blue alpha:1.0f];
}
@end

This is fairly straightforward. We declare a static variable that tells us if this is the first time
through the method. The first time this method is called during an application’s run, we will
seed the random number generator. Doing this here means we don’t have to rely on the
application doing it somewhere else, and as a result, we can reuse this category in other
iPhone projects.

Once we’ve made sure the random number generator is seeded, we generate three random
CGFloats with a value between 0.0 and 1.0, and use those three values to create a new color.
We set alpha to 1.0 so that all generated colors will be opaque.

Defining Application Constants
We’re going to define constants for each of the options that the user can select using the
segmented controllers. Single-click Constants.h, and add the following:

typedef enum {
 kLineShape = 0,
 kRectShape,
 kEllipseShape,
 kImageShape
} ShapeType;

typedef enum {
 kRedColorTab = 0,
 kBlueColorTab,
 kYellowColorTab,
 kGreenColorTab,
 kRandomColorTab
} ColorTabIndex;

#define degreesToRadian(x) (M_PI * (x) / 180.0)

To make our code more readable, we’ve declared two enumeration types using typedef.
One will represent the available shape options available; the other will represent the various
color options available. The values these constants hold will correspond to segments on the
two segmented controllers we will create in our application.

24594ch12.indd 407 6/25/09 6:06:12 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL408

Implementing the QuartzFunView Skeleton
Since we’re going to do our drawing in a subclass of UIView, let’s set up that class with
everything it needs except for the actual code to do the drawing, which we’ll add later.
 Single-click QuartzFunView.h, and make the following changes:

#import <UIKit/UIKit.h>
#import "Constants.h"

@interface QuartzFunView : UIView {
 CGPoint firstTouch;
 CGPoint lastTouch;
 UIColor *currentColor;
 ShapeType shapeType;
 UIImage *drawImage;
 BOOL useRandomColor;
}
@property CGPoint firstTouch;
@property CGPoint lastTouch;
@property (nonatomic, retain) UIColor *currentColor;
@property ShapeType shapeType;
@property (nonatomic, retain) UIImage *drawImage;
@property BOOL useRandomColor;
@end

The first thing we do is import the Constants.h header we
just created so we can make use of our enumerations.
We then declare our instance variables. The first two will
track the user’s finger as it drags across the screen. We’ll
store the location where the user first touches the screen
in firstTouch. We’ll store the location of the user’s finger
while dragging and when the drag ends in lastTouch. Our
drawing code will use these two variables to determine
where to draw the requested shape.

Next, we define a color to hold the user’s color selec-
tion and a ShapeType to keep track of the shape the user
wants drawn. After that is a UIImage property that will
hold the image to be drawn on the screen when the user
selects the rightmost toolbar item on the bottom toolbar
(see Figure 12-6). The last property is a Boolean that will
be used to keep track of whether the user is requesting a
 random color.

Switch to QuartzFunView.m, and make the following
changes:

Figure 12-6. When drawing a
UIImage to the screen, notice that
the color control disappears.

24594ch12.indd 408 6/25/09 6:06:12 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 409

#import "QuartzFunView.h"
#import "UIColor-Random.h"
@implementation QuartzFunView
@synthesize firstTouch;
@synthesize lastTouch;
@synthesize currentColor;
@synthesize shapeType;
@synthesize drawImage;
@synthesize useRandomColor;

- (id)initWithCoder:(NSCoder*)coder
{
 if ((self = [super initWithCoder:coder])) {
 self.currentColor = [UIColor redColor];
 self.useRandomColor = NO;
 if (drawImage == nil)
 self.drawImage = [UIImage imageNamed:@"iphone.png"];
 }
 return self;
}
- (id)initWithFrame:(CGRect)frame {
 if (self = [super initWithFrame:frame]) {
 // Initialization code
 }
 return self;
}
- (void)drawRect:(CGRect)rect {

 // Drawing code
}
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 if (useRandomColor)
 self.currentColor = [UIColor randomColor];
 UITouch *touch = [touches anyObject];
 firstTouch = [touch locationInView:self];
 lastTouch = [touch locationInView:self];
 [self setNeedsDisplay];
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 lastTouch = [touch locationInView:self];

 [self setNeedsDisplay];
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 lastTouch = [touch locationInView:self];

24594ch12.indd 409 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL410

 [self setNeedsDisplay];

}

- (void)dealloc {
 [currentColor release];
 [drawImage release];
 [super dealloc];
}

@end

Because this view is getting loaded from a nib, we first implement initWithCoder:. Keep
in mind that object instances in nibs are stored as archived objects, which is the exact same
mechanism we used in the previous chapter to archive and load our objects to disk. As a
result, when an object instance is loaded from a nib, neither init: nor initWithFrame:
ever gets called. Instead, initWithCoder: is used, so this is where we need to add any
initialization code. In our case, we set the initial color value to red, initialize useRan-
domColor to NO and load the image file that we’re going to draw. You don’t have to fully
understand the rest of the code here. We’ll get into the details of working with touches
and the specifics of the touchesBegan:withEvent:, touchesMoved:withEvent:, and
touchesEnded:withEvent: methods in Chapter 13. In a nutshell, these three methods
inherited from UIView (but actually declared in UIView’s parent UIResponder) can be over-
ridden to find out where the user is touching the iPhone’s screen.

touchesBegan:withEvent: gets called when the user’s finger first touch the screen. In
that method, we change the color if the user has selected a random color using the new
 randomColor method we added to UIColor earlier. After that, we store the current loca-
tion so that we know where the user first touched the screen, and we indicate that our view
needs to be redrawn by calling setNeedsDisplay on self.

The next method, touchesMoved:withEvent:, gets continuously called while the user is
dragging a finger on the screen. All we do here is store off the new location in lastTouch
and indicate that the screen needs to be redrawn.

The last one, touchesEnded:withEvent:, gets called when the user lifts that finger off of
the screen. Just like in the touchesMoved:withEvent: method, all we do is store off the final
location in the lastTouch variable and indicate that the view needs to be redrawn.

Don’t worry if you don’t fully grok what the three methods that start with touches are doing;
we’ll be working on these in much greater detail in the next few chapters.

We’ll come back to this class once we have our application skeleton up and running. That
drawRect: method, which is currently empty except for a comment, is where we will do this

24594ch12.indd 410 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 411

application’s real work, and we haven’t written that yet. Let’s finish setting up the application
before we add our drawing code.

Adding Outlets and Actions to the View Controller
If you refer to Figure 12-1, you’ll see that our interface includes two segmented controllers,
one at the top and one at the bottom of the screen. The one on top, which lets the user
select color, is applicable to only three of the four options on the bottom, so we’re going to
need an outlet to that top segmented controller, so we can hide it when it doesn’t serve a
purpose. We also need two methods, one that will be called when a new color is selected
and another that will be called when a new shape is selected.

Single-click QuartzFunViewController.h, and make the following changes:

#import <UIKit/UIKit.h>

@interface QuartzFunViewController : UIViewController {
 UISegmentedControl *colorControl;
}
@property (nonatomic, retain) IBOutlet UISegmentedControl *colorControl;
- (IBAction)changeColor:(id)sender;
- (IBAction)changeShape:(id)sender;
@end

Nothing there should need explanation at this point, so switch over to QuartzFunView
Controller.m, and make these changes to the top of the file:

#import "QuartzFunViewController.h"
#import "QuartzFunView.h"
#import "Constants.h"

@implementation QuartzFunViewController
@synthesize colorControl;

- (IBAction)changeColor:(id)sender {
 UISegmentedControl *control = sender;
 NSInteger index = [control selectedSegmentIndex];

 QuartzFunView *quartzView = (QuartzFunView *)self.view;

 switch (index) {
 case kRedColorTab:
 quartzView.currentColor = [UIColor redColor];
 quartzView.useRandomColor = NO;
 break;
 case kBlueColorTab:
 quartzView.currentColor = [UIColor blueColor];

24594ch12.indd 411 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL412

 quartzView.useRandomColor = NO;
 break;
 case kYellowColorTab:
 quartzView.currentColor = [UIColor yellowColor];
 quartzView.useRandomColor = NO;
 break;
 case kGreenColorTab:
 quartzView.currentColor = [UIColor greenColor];
 quartzView.useRandomColor = NO;
 break;
 case kRandomColorTab:
 quartzView.useRandomColor = YES;
 break;
 default:
 break;
 }
}
- (IBAction)changeShape:(id)sender {
 UISegmentedControl *control = sender;
 [(QuartzFunView *)self.view setShapeType:[control
 selectedSegmentIndex]];

 if ([control selectedSegmentIndex] == kImageShape)
 colorControl.hidden = YES;
 else
 colorControl.hidden = NO;
}
...

Let’s also be good memory citizens by adding the following code to the existing
 viewDidUnload and dealloc methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.colorControl = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [colorControl release];
 [super dealloc];
}
...

Again, these code changes are pretty straightforward. In the changeColor: method, we
look at which segment was selected and create a new color based on that selection. We cast

24594ch12.indd 412 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 413

view to QuartzFunView. Next, we set its currentColor property so that it knows what color
to use when drawing, except when a random color is selected, in which case, we just set the
view’s useRandomColor property to YES. Since all the drawing code will be in the view itself,
we don’t have to do anything else in this method.

In the changeShape: method, we do something similar. However, since we don’t need to
create an object, we can just set the view’s shapeType property to the segment index from
sender. Recall the ShapeType enum? The four elements of the enum correspond to the four
toolbar segments at the bottom of the application view. We set the shape to be the same
as the currently selected segment, and we hide and unhide the colorControl based on
whether the Image segment was selected.

Updating QuartzFunViewController.xib
Before we can start drawing, we need to add the segmented controls to our nib and then
hook up the actions and outlets. Double-click QuartzFunViewController.xib to open the file in
Interface Builder. The first order of business is to change the class of the view, so single-click
the View icon in the window labeled QuartzFunViewController.xib, and press ⌘4 to open the
identity inspector. Change the class from UIView to QuartzFunView.

Next, look for a Navigation Bar in the library. Make sure you are grabbing a Navigation Bar—
not a Navigation Controller. We just want the bar that goes at the top of the view. Place the
Navigation Bar snugly against the top of the view window, just beneath the status bar.

Next, look for a Segmented Control in the library, and
drag that right on top of the Navigation Bar. Drop
it in the center of the nav bar, not on the left or
right side. Once you drop it, it should stay selected,
so grab one of the resize dots on either side of the
segmented control and resize it so that it takes up
the entire width of the navigation bar. You won’t
get any blue guide lines, but Interface Builder won’t
let you make the bar any bigger than you want it
in this case, so just drag until it won’t expand any
further.

With the segmented control still selected, press ⌘1
to bring up the attributes inspector, and change the
number of segments from 2 to 5. Double-click each
segment in turn, changing its label to (from left to
right) Red, Blue, Yellow, Green, and Random in that
order. At this point, your View window should look
like Figure 12-7. Figure 12-7. The completed

navigation bar

24594ch12.indd 413 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL414

Control-drag from the File’s Owner icon to the segmented control, and select the colorCon-
trol outlet. Make sure you are dragging to the segmented control and not the nav bar. Next,
make sure the segmented control is selected, and press ⌘2 to bring up the connections
inspector. Drag from the Value Changed event to File’s Owner, and select the changeColor:
action.

Now look for a Toolbar in the library, and drag one of those over to the bottom of the win-
dow. The Toolbar from the library has a button on it that we don’t need, so select it and press
the delete button on your keyboard. Once it’s placed and the button is deleted, grab another
Segmented Control, and drop it onto the toolbar.

As it turns out, segmented controls are a bit harder to center in a toolbar, so we’ll bring in
a little help. Drag a Flexible Space Bar Button Item from the library onto the toolbar, to the
left of our segmented control. Next, drag a second Flexible Space Bar Button Item onto the
toolbar, to the right of our segmented control. These items will keep the segmented control
centered in the toolbar as we resize it. Click the segmented control to select it, and resize it
so it fills the toolbar with just a bit of space to the left and right. Interface Builder won’t give
you guides or stop you from making it wider than the toolbar the way it did with the naviga-
tion bar, so you’ll have to be a little careful to resize it to the right size.

Next, with the segmented control still selected, press ⌘1 to bring up the attributes inspec-
tor, and change the number of segments from 2 to 4. Change the titles of the four segments
to be Line, Rect, Ellipse, and Image, in that order. Switch to the connections inspector, and
connect Value Changed event to File’s Owner’s changeShape: action method. Save and close
the nib, and go back to Xcode.

NOTE
You may have wondered why we put a navigation bar at the top of the view and a toolbar at the bottom
of the view. According to the iPhone Human Interface Guidelines published by Apple, navigation bars were
specifically designed to be placed at the top of the screen and toolbars are designed for the bottom. If you
read the descriptions of the Toolbar and Navigation Bar in Interface Builder’s library window, you’ll see
this design intention spelled out.

Make sure that everything is in order by compiling and running. You won’t be able to draw
shapes on the screen yet, but the segmented controls should work, and when you tap the
Image segment in the bottom control, the color controls should disappear. Once you’ve got
everything working, let’s do some drawing.

24594ch12.indd 414 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 415

Drawing the Line
Back in Xcode, edit QuartzFunView.m, and replace the empty drawRect: method with
this one:

- (void)drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();

 CGContextSetLineWidth(context, 2.0);
 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);

 switch (shapeType) {
 case kLineShape:
 CGContextMoveToPoint(context, firstTouch.x, firstTouch.y);
 CGContextAddLineToPoint(context, lastTouch.x, lastTouch.y);
 CGContextStrokePath(context);
 break;
 case kRectShape:
 break;
 case kEllipseShape:
 break;
 case kImageShape:
 break;
 default:
 break;
 }
}

We start things off by retrieving a reference to the current context so we know where to
draw:

 CGContextRef context = UIGraphicsGetCurrentContext();

Next, we set the line width to 2.0, which means that any line that we stroke will be 2 pixels
wide:

 CGContextSetLineWidth(context, 2.0);

After that, we set the color for stroking lines. Since UIColor has a CGColor property, which
is what this method needs, we use that property of our currentColor instance variable to
pass the correct color onto this function:

 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);

24594ch12.indd 415 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL416

We use a switch to jump to the appropriate code for each shape type. We’ll start off with
the code to handle kLineShape, get that working, and then we’ll add code for each shape in
turn as we make our way through this chapter:

 switch (shapeType) {
 case kLineShape:

To draw a line, we move the invisible pen to the first place the user touched. Remember,
we stored that value in the touchesBegan: method, so it will always reflect the first spot
touched the last time the user did a touch or drag.

 CGContextMoveToPoint(context, firstTouch.x, firstTouch.y);

Next, we draw a line from that spot to the last spot the user touched. If the user’s finger is
still in contact with the screen, lastTouch contains Mr. Finger’s current location. If the user
is no longer touching the screen, lastTouch contains the location of the user’s finger when
it was lifted off the screen.

 CGContextAddLineToPoint(context, lastTouch.x, lastTouch.y);

Then, we just stroke the path. This function will stroke the
line we just drew using the color and width we set earlier:

 CGContextStrokePath(context);

After that, we just finish the switch statement, and we’re
done for now.

 break;
 case kRectShape:
 break;
 case kEllipseShape:
 break;
 case kImageShape:
 break;
 default:
 break;
 }

At this point, you should be able to compile and run. The
Rect, Ellipse, and Shape options won’t work, but you should
be able to draw lines just fine (see Figure 12-8).

Figure 12-8. The line drawing
part of our application is now
complete. In this image, we are
drawing using a random color.

24594ch12.indd 416 6/25/09 6:06:13 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 417

Drawing the Rectangle and Ellipse
Let’s implement the code to draw the rectangle and the ellipse at the same time, since
Quartz 2D implements both of these objects in basically the same way. Make the following
changes to your drawRect: method:

- (void)drawRect:(CGRect)rect {

 if (currentColor == nil)
 self.currentColor = [UIColor redColor];

 CGContextRef context = UIGraphicsGetCurrentContext();

 CGContextSetLineWidth(context, 2.0);
 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);

 CGContextSetFillColorWithColor(context, currentColor.CGColor);
 CGRect currentRect = CGRectMake (
 (firstTouch.x > lastTouch.x) ? lastTouch.x : firstTouch.x,
 (firstTouch.y > lastTouch.y) ? lastTouch.y : firstTouch.y,
 fabsf(firstTouch.x - lastTouch.x),
 fabsf(firstTouch.y - lastTouch.y));

 switch (shapeType) {
 case kLineShape:
 CGContextMoveToPoint(context, firstTouch.x, firstTouch.y);
 CGContextAddLineToPoint(context, lastTouch.x, lastTouch.y);
 CGContextStrokePath(context);
 break;
 case kRectShape:
 CGContextAddRect(context, currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kEllipseShape:
 CGContextAddEllipseInRect(context, currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kImageShape:
 break;
 default:
 break;
 }
}

Because we want to paint both the ellipse and the rectangle in a solid color, we add a call to
set the fill color using currentColor:

CGContextSetFillColorWithColor(context, currentColor.CGColor);

24594ch12.indd 417 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL418

Next, we declare a CGRect variable. We’ll use currentRect to hold the rectangle described
by the user’s drag. Remember, a CGRect has two members: size, and origin. A function
called CGRectMake() lets us create a CGRect by specifying the x, y, width, and height val-
ues, so we use that to make our rectangle. The code to make the rectangle may look a little
intimidating at first glance, but it’s not that complicated. The user could have dragged in any
direction, so the origin will vary depending on the drag direction. We use the lower x value
from the two points and the lower y value from the two points to create the origin. Then we
figure out the size by getting the absolute value of the difference between the two x values
and the two y values.

 CGRect currentRect = CGRectMake (
 (firstTouch.x > lastTouch.x) ? lastTouch.x : firstTouch.x,
 (firstTouch.y > lastTouch.y) ? lastTouch.y : firstTouch.y,
 fabsf(firstTouch.x - lastTouch.x),
 fabsf(firstTouch.y - lastTouch.y));

Once we have this rectangle defined, drawing either a rectangle or an ellipse is as easy as
calling two functions, one to draw the rectangle or ellipse in the CGRect we defined and the
other to stroke and fill it.

 case kRectShape:
 CGContextAddRect(context, currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kEllipseShape:
 CGContextAddEllipseInRect(context, currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;

Compile and run your application and try out the Rect and Ellipse tools to see how you like
them. Don’t forget to change colors now and again and to try out the random color.

Drawing the Image
For our last trick, let’s draw an image. There is an image in the 12 QuartzFun folder called
iphone.png that you can add to your Resources folder, or you can add any .png file you want
to use as long as you remember to change the filename in your code to point to the image
you choose.

Add the following code to your drawRect: method:

- (void)drawRect:(CGRect)rect {

 if (currentColor == nil)
 self.currentColor = [UIColor redColor];

 CGContextRef context = UIGraphicsGetCurrentContext();

24594ch12.indd 418 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 419

 CGContextSetLineWidth(context, 2.0);
 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);

 CGContextSetFillColorWithColor(context, currentColor.CGColor);
 CGRect currentRect;
 currentRect = CGRectMake (
 (firstTouch.x > lastTouch.x) ? lastTouch.x : firstTouch.x,
 (firstTouch.y > lastTouch.y) ? lastTouch.y : firstTouch.y,
 fabsf(firstTouch.x - lastTouch.x),
 fabsf(firstTouch.y - lastTouch.y);

 switch (shapeType) {
 case kLineShape:
 CGContextMoveToPoint(context, firstTouch.x, firstTouch.y);
 CGContextAddLineToPoint(context, lastTouch.x, lastTouch.y);
 CGContextStrokePath(context);
 break;
 case kRectShape:
 CGContextAddRect(context, currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kEllipseShape:
 CGContextAddEllipseInRect(context, currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kImageShape: {
 CGFloat horizontalOffset = drawImage.size.width / 2;
 CGFloat verticalOffset = drawImage.size.height / 2;
 CGPoint drawPoint = CGPointMake(lastTouch.x - horizontalOffset,
 lastTouch.y - verticalOffset);
 [drawImage drawAtPoint:drawPoint];
 break;
 }
 default:
 break;
 }
}

TIP
Notice that, in the switch statement, we added curly braces around the code under
case kImageShape:. GCC has a problem with variables declared in the first line after a case state-
ment. These curly braces are our way of telling GCC to stop complaining. We could also have declared
horizontalOffset before the switch statement, but this approach keeps the related code
together.

24594ch12.indd 419 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL420

First, we calculate the center of the image, since we want the image drawn centered on the
point where the user last touched. Without this adjustment, the image would get drawn
with the upper-left corner at the user’s finger, also a valid option. We then make a new
CGpoint by subtracting these offsets from the x and y values in lastTouch.

CGFloat horizontalOffset = drawImage.size.width / 2;
CGFloat verticalOffset = drawImage.size.height / 2;
CGPoint drawPoint = CGPointMake(lastTouch.x - horizontalOffset,
 lastTouch.y - verticalOffset);

Now, we tell the image to draw itself. This line of code will do the trick:

[drawImage drawAtPoint:drawPoint];

Optimizing the QuartzFun Application
Our application does what we want, but we should consider a bit of optimization. In our
application, you won’t notice a slowdown, but in a more complex application, running on a
slower processor, you might see some lag. The problem occurs in QuartzFunView.m, in the
methods touchesMoved: and touchesEnded:. Both methods include this line of code:

[self setNeedsDisplay];

Obviously, this is how we tell our view that something has changed, and it needs to redraw
itself. This code works, but it causes the entire view to get erased and redrawn, even if only
a tiny little bit changed. We do want to erase the screen when we get ready to drag out a
new shape, but we don’t want to clear the screen several times a second as we drag out our
shape.

Rather than forcing the entire view to be redrawn many times during our drag, we can use
setNeedsDisplayInRect: instead. setNeedsDisplayInRect: is an NSView method that
marks a just one rectangular portion of a view’s region as needing redisplay. By using this,
we can be more efficient by marking only the part of the view that is affected by the current
drawing operation as needing to be redrawn.

We need to redraw not just the rectangle between firstTouch and lastTouch but any
part of the screen encompassed by the current drag. If the user touches the screen and then
scribbles all over and we redrew the only section between firstTouch and lastTouch, we’d
leave a lot of stuff drawn on the screen that we don’t want.

The answer is to keep track of the entire area that’s been affected by a particular drag in a
CGRect instance variable. In touchesBegan:, we reset that instance variable to just the point
where the user touched. Then in touchesMoved: and touchesEnded:, we use a Core Graph-
ics function to get the union of the current rectangle and the stored rectangle, and we store

24594ch12.indd 420 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 421

the resulting rectangle. We also use it to specify what part of the view needs to be redrawn.
This approach gives us a running total of the area impacted by the current drag.

Right now, we calculate the current rectangle in the drawRect: method for use in drawing
the ellipse and rectangle shapes. We’ll move that calculation into a new method so that it
can be used in all three places without repeating code. Ready? Let’s do it. Make the following
changes to QuartzFunView.h:

#import <UIKit/UIKit.h>
#import "Constants.h"

@interface QuartzFunView : UIView {
 CGPoint firstTouch;
 CGPoint lastTouch;
 UIColor *currentColor;
 ShapeType shapeType;
 UIImage *drawImage;
 BOOL useRandomColor;
 CGRect redrawRect;
}
@property CGPoint firstTouch;
@property CGPoint lastTouch;
@property (nonatomic, retain) UIColor *currentColor;
@property ShapeType shapeType;
@property (nonatomic, retain) UIImage *drawImage;
@property BOOL useRandomColor;
@property (readonly) CGRect currentRect;
@property CGRect redrawRect;
@end

We declare a CGRect called redrawRect that we will use to keep track of the area that needs
to be redrawn. We also declare a read-only property called currentRect, which will return
that rectangle that we were previously calculating in drawRect:. Notice that it is a property
with no underlying instance variable, which is okay, as long as we implement the accessor
rather than relying on @synthesize to do it for us. We’ll still use the @synthesize keyword,
but will write the accessor ourselves. @synthesize will create an accessor or mutator only if
one doesn’t already exist in the class.

Switch over to QuartzFunView.m, and insert the following code at the top of the file:

#import "QuartzFunView.h"

@implementation QuartzFunView
@synthesize firstTouch;
@synthesize lastTouch;
@synthesize currentColor;
@synthesize shapeType;

24594ch12.indd 421 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL422

@synthesize drawImage;
@synthesize useRandomColor;
@synthesize redrawRect;
@synthesize currentRect;
- (CGRect)currentRect {
 return CGRectMake (
 (firstTouch.x > lastTouch.x) ? lastTouch.x : firstTouch.x,
 (firstTouch.y > lastTouch.y) ? lastTouch.y : firstTouch.y,
 fabsf(firstTouch.x - lastTouch.x),
 fabsf(firstTouch.y - lastTouch.y));
}
...

Now, in the drawRect: method, delete the lines of code where we calculated currentRect,
and change all references to currentRect to self.currentRect so that the code uses that
new accessor we just created.

...
- (void)drawRect:(CGRect)rect {
 if (currentColor == nil)
 self.currentColor = [UIColor redColor];

 CGContextRef context = UIGraphicsGetCurrentContext();

 CGContextSetLineWidth(context, 2.0);
 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);

 CGContextSetFillColorWithColor(context, currentColor.CGColor);

 CGRect currentRect = CGRectMake (
 (firstTouch.x > lastTouch.x) ? lastTouch.x : firstTouch.x,
 (firstTouch.y > lastTouch.y) ? lastTouch.y : firstTouch.y,
 fabsf(firstTouch.x - lastTouch.x),
 fabsf(firstTouch.y - lastTouch.y));

 switch (shapeType) {
 case kLineShape:
 CGContextMoveToPoint(context, firstTouch.x, firstTouch.y);
 CGContextAddLineToPoint(context, lastTouch.x, lastTouch.y);
 CGContextStrokePath(context);
 break;
 case kRectShape:
 CGContextAddRect(context, self.currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kEllipseShape:
 CGContextAddEllipseInRect(context, self.currentRect);

24594ch12.indd 422 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 423

 CGContextDrawPath(context, kCGPathFillStroke);
 break;
 case kImageShape:
 if (drawImage == nil)
 self.drawImage = [UIImage imageNamed:@"iphone.png"];

 CGFloat horizontalOffset = drawImage.size.width / 2;
 CGFloat verticalOffset = drawImage.size.height / 2;
 CGPoint drawPoint = CGPointMake(lastTouch.x - horizontalOffset,
 lastTouch.y - verticalOffset);
 [drawImage drawAtPoint:drawPoint];
 break;
 default:
 break;
 }
}
...

We also need to make some changes to in touchesEnded:withEvent: and
touchesMoved:withEvent:. We need to recalculate the space impacted by the current
operation, and use that to indicate that only portion of our view needs to be redrawn:

...
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 lastTouch = [touch locationInView:self];

 [self setNeedsDisplay];
 if (shapeType == kImageShape) {
 CGFloat horizontalOffset = drawImage.size.width / 2;
 CGFloat verticalOffset = drawImage.size.height / 2;
 redrawRect = CGRectUnion(redrawRect, CGRectMake(lastTouch.x -
 horizontalOffset, lastTouch.y - verticalOffset,
 drawImage.size.width, drawImage.size.height));
 }
 else
 redrawRect = CGRectUnion(redrawRect, self.currentRect);
 redrawRect = CGRectInset(redrawRect, -2.0, -2.0);
 [self setNeedsDisplayInRect:redrawRect];
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 lastTouch = [touch locationInView:self];

 [self setNeedsDisplay];
 if (shapeType == kImageShape) {
 CGFloat horizontalOffset = drawImage.size.width / 2;

24594ch12.indd 423 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL424

 CGFloat verticalOffset = drawImage.size.height / 2;
 redrawRect = CGRectUnion(redrawRect,
 CGRectMake(lastTouch.x - horizontalOffset,
 lastTouch.y - verticalOffset, drawImage.size.width,
 drawImage.size.height));
 }
 redrawRect = CGRectUnion(redrawRect, self.currentRect);
 [self setNeedsDisplayInRect:redrawRect];
}
...

With only a few additional lines of code, we reduced the amount of work necessary to
redraw our view by getting rid of the need to erase and redraw any portion of the view that
wasn’t been affected by the current drag. Being kind to the iPhone’s precious processor
cycles like this can make a big difference in the performance of your applications, especially
as they get more complex.

Some OpenGL ES Basics
As we mentioned earlier in the chapter, OpenGL ES and Quartz 2D take fundamentally dif-
ferent approaches to drawing. A detailed introduction to OpenGL ES would be a book in and
of itself, so we’re not going to attempt that here. Instead, we’re going to re-create our Quartz
2D application using OpenGL ES, just to give you a sense of the basics and some sample
code you can use to kick start your own OpenGL applications.

NOTE
When you are ready to add OpenGL to your own applications, take a side trip to http://www.
khronos.org/opengles/, which is the home base of the OpenGL ES standards group. Even better,
visit this page, and search for the word “tutorial”: http://www.khronos.org/developers/
resources/opengles/

Also, be sure to check out the OpenGL tutorial in Jeff LaMarche’s iPhone blog:

http://iphonedevelopment.blogspot.com/2009/05/
opengl-es-from-ground-up-table-of.html

Let’s get started with our application.

Building the GLFun Application
Create a new view-based application in Xcode, and call it GLFun. To save time, copy the
files Constants.h, UIColor-Random.h, UIColor-Random.m, and iphone.png from the Quartz-
Fun project into this new project. Open GLFunViewController.h, and make the following

24594ch12.indd 424 6/25/09 6:06:14 PM

Download at Boykma.Com

http://iphonedevelopment.blogspot.com/2009/05/%E2%9E%A5
http://www
http://www.khronos.org/developers/

CHAPTER 12: Drawing with Quartz and OpenGL 425

changes. You should recognize them, as they’re identical to the changes we made to
QuartzFunViewController.h earlier:

#import <UIKit/UIKit.h>

@interface GLFunViewController : UIViewController {
 UISegmentedControl *colorControl;
}
@property (nonatomic, retain) IBOutlet UISegmentedControl *colorControl;
- (IBAction)changeColor:(id)sender;
- (IBAction)changeShape:(id)sender;
@end

Switch over to QuartzFunViewController.m, and make the following changes at the beginning
of the file. Again, these changes should look very familiar to you:

#import "GLFunViewController.h"
#import "Constants.h"
#import "GLFunView.h"
#import "UIColor-Random.h"

@implementation GLFunViewController
@synthesize colorControl;

- (IBAction)changeColor:(id)sender {
 UISegmentedControl *control = sender;
 NSInteger index = [control selectedSegmentIndex];

 GLFunView *glView = (GLFunView *)self.view;

 switch (index) {
 case kRedColorTab:
 glView.currentColor = [UIColor redColor];
 glView.useRandomColor = NO;
 break;
 case kBlueColorTab:
 glView.currentColor = [UIColor blueColor];
 glView.useRandomColor = NO;
 break;
 case kYellowColorTab:
 glView.currentColor = [UIColor yellowColor];
 glView.useRandomColor = NO;
 break;
 case kGreenColorTab:
 glView.currentColor = [UIColor greenColor];
 glView.useRandomColor = NO;
 break;
 case kRandomColorTab:

24594ch12.indd 425 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL426

 glView.useRandomColor = YES;
 break;
 default:
 break;
 }
}

- (IBAction)changeShape:(id)sender {
 UISegmentedControl *control = sender;
 [(GLFunView *)self.view setShapeType:[control selectedSegmentIndex]];
 if ([control selectedSegmentIndex] == kImageShape)
 [colorControl setHidden:YES];
 else
 [colorControl setHidden:NO];
}
...

Let’s not forget to deal with memory cleanup:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.colorControl = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [colorControl release];
 [super dealloc];
}
...

The only difference between this and QuartzFunController.m is that we’re referencing a view
called GLFunView instead of one called QuartzFunView. The code that does our drawing is
contained in a subclass of UIView. Since we’re doing the drawing in a completely different
way this time, it makes sense to use a new class to contain that drawing code.

Before we proceed, you’ll need to add a few more files to your project. In the 12 GLFun
folder, you’ll find four files named Texture2D.h, Texture2D.m, OpenGLES2DView.h, and
OpenGLES2DView.m. The code in the first two files was written by Apple to make drawing
images in OpenGL ES much easier than it otherwise would be. The second file is a class we’ve
provided based on sample code from Apple that configures OpenGL to do two-dimensional
drawing. OpenGL configuration is a complex topic that entire books have been written on,
so we’ve done that configuration for you. You can feel free to use any of these files in your
own programs if you wish.

24594ch12.indd 426 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 427

OpenGL ES doesn’t have sprites or images, per se; it has one kind of image called a texture.
Textures have to be drawn onto a shape or object. The way you draw an image in OpenGL
ES is to draw a square (technically speaking, it’s two triangles), and then map a texture onto
that square so that it exactly matches the square’s size. Texture2D encapsulates that rela-
tively complex process into a single, easy-to-use class.

OpenGLES2DView is a subclass of UIView that uses OpenGL to do its drawing. We set up this
view so that the coordinate systems of OpenGL ES and the coordinate system of the view are
mapped on a one-to-one basis. OpenGL ES is a three-dimensional system. OpenGLES2DView
maps the OpenGL 3-D world to the pixels of our 2-D view. Note that, despite the one-to-one
relationship between the view and the OpenGL context, the y coordinates are still flipped, so
we have to translate the y coordinate from the view coordinate system, where increases in y
represent moving down, to the OpenGL coordinate system, where increases in y represent
moving up.

To use the OpenGLES2DView class, first subclass it, and then implement the draw method
to do your actual drawing, just as we do in the following code. You can also implement any
other methods you need in your view, such as the touch-related methods we used in the
QuartzFun example.

Create a new file using the Cocoa Touch Class template, select Objective-C class and NSObject
for Subclass of, and call it GLFunView.m, making sure to have it create the header file.

Single-click GLFunView.h, and make the following changes:

#import <Foundation/Foundation.h>
#import "Constants.h"
#import "OpenGLES2DView.h"

@class Texture2D;

@interface GLFunView : NSObject {
@interface GLFunView : OpenGLES2DView {
 CGPoint firstTouch;
 CGPoint lastTouch;
 UIColor *currentColor;
 BOOL useRandomColor;

 ShapeType shapeType;

 Texture2D *sprite;
}
@property CGPoint firstTouch;
@property CGPoint lastTouch;
@property (nonatomic, retain) UIColor *currentColor;
@property BOOL useRandomColor;

24594ch12.indd 427 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL428

@property ShapeType shapeType;
@property (nonatomic, retain) Texture2D *sprite;
@end

This class is similar to QuartzFunView.h, but instead of using UIImage to hold our image, we
use a Texture2D to simplify the process of drawing images into an OpenGL ES context. We
also change the superclass from UIView to OpenGLES2DView so that our view becomes an
OpenGL ES–backed view set up for doing two-dimensional drawing.

Switch over to GLFunView.m, and make the following changes.

#import "GLFunView.h"
#import "UIColor-Random.h"
#import "Texture2D.h"

@implementation GLFunView
@synthesize firstTouch;
@synthesize lastTouch;
@synthesize currentColor;
@synthesize useRandomColor;
@synthesize shapeType;
@synthesize sprite;

- (id)initWithCoder:(NSCoder*)coder {
 if (self = [super initWithCoder:coder]) {
 self.currentColor = [UIColor redColor];
 self.useRandomColor = NO;
 self.sprite = [[Texture2D alloc] initWithImage:[UIImage
 imageNamed:@"iphone.png"]];
 glBindTexture(GL_TEXTURE_2D, sprite.name);
 }
 return self;
}

- (void)draw {
 glLoadIdentity();

 glClearColor(0.78f, 0.78f, 0.78f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 CGColorRef color = currentColor.CGColor;
 const CGFloat *components = CGColorGetComponents(color);
 CGFloat red = components[0];
 CGFloat green = components[1];
 CGFloat blue = components[2];

 glColor4f(red,green, blue, 1.0);

24594ch12.indd 428 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 429

 switch (shapeType) {
 case kLineShape: {
 glDisable(GL_TEXTURE_2D);
 GLfloat vertices[4];

 // Convert coordinates
 vertices[0] = firstTouch.x;
 vertices[1] = self.frame.size.height - firstTouch.y;
 vertices[2] = lastTouch.x;
 vertices[3] = self.frame.size.height - lastTouch.y;
 glLineWidth(2.0);
 glVertexPointer(2, GL_FLOAT, 0, vertices);
 glDrawArrays (GL_LINES, 0, 2);
 break;
 }
 case kRectShape: {
 glDisable(GL_TEXTURE_2D);
 // Calculate bounding rect and store in vertices
 GLfloat vertices[8];
 GLfloat minX = (firstTouch.x > lastTouch.x) ?
 lastTouch.x : firstTouch.x;
 GLfloat minY = (self.frame.size.height - firstTouch.y >
 self.frame.size.height - lastTouch.y) ?
 self.frame.size.height - lastTouch.y :
 self.frame.size.height - firstTouch.y;
 GLfloat maxX = (firstTouch.x > lastTouch.x) ?
 firstTouch.x : lastTouch.x;
 GLfloat maxY = (self.frame.size.height - firstTouch.y >
 self.frame.size.height - lastTouch.y) ?
 self.frame.size.height - firstTouch.y :
 self.frame.size.height - lastTouch.y;

 vertices[0] = maxX;
 vertices[1] = maxY;
 vertices[2] = minX;
 vertices[3] = maxY;
 vertices[4] = minX;
 vertices[5] = minY;
 vertices[6] = maxX;
 vertices[7] = minY;

 glVertexPointer (2, GL_FLOAT , 0, vertices);
 glDrawArrays (GL_TRIANGLE_FAN, 0, 4);
 break;
 }
 case kEllipseShape: {
 glDisable(GL_TEXTURE_2D);

24594ch12.indd 429 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL430

 GLfloat vertices[720];
 GLfloat xradius = (firstTouch.x > lastTouch.x) ?
 (firstTouch.x - lastTouch.x)/2 :
 (lastTouch.x - firstTouch.x)/2;
 GLfloat yradius = (self.frame.size.height - firstTouch.y >
 self.frame.size.height - lastTouch.y) ?
 ((self.frame.size.height - firstTouch.y) -
 (self.frame.size.height - lastTouch.y))/2 :
 ((self.frame.size.height - lastTouch.y) -
 (self.frame.size.height - firstTouch.y))/2;
 for (int i = 0; i < 720; i+=2) {
 GLfloat xOffset = (firstTouch.x > lastTouch.x) ?
 lastTouch.x + xradius
 : firstTouch.x + xradius;
 GLfloat yOffset = (self.frame.size.height - firstTouch.y >
 self.frame.size.height - lastTouch.y) ?
 self.frame.size.height - lastTouch.y + yradius :
 self.frame.size.height - firstTouch.y + yradius;
 vertices[i] = (cos(degreesToRadian(i/2))*xradius) + xOffset;
 vertices[i+1] = (sin(degreesToRadian(i/2))*yradius) +
 yOffset;
 }
 glVertexPointer(2, GL_FLOAT , 0, vertices);
 glDrawArrays (GL_TRIANGLE_FAN, 0, 360);
 break;

 }
 case kImageShape:
 glEnable(GL_TEXTURE_2D);
 [sprite drawAtPoint:CGPointMake(lastTouch.x,
 self.frame.size.height - lastTouch.y)];
 break;
 default:
 break;
 }

 glBindRenderbufferOES(GL_RENDERBUFFER_OES, viewRenderbuffer);
 [context presentRenderbuffer:GL_RENDERBUFFER_OES];
}

- (void)dealloc {
 [currentColor release];
 [sprite release];
 [super dealloc];
}

24594ch12.indd 430 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 431

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 if (useRandomColor)
 self.currentColor = [UIColor randomColor];

 UITouch* touch = [[event touchesForView:self] anyObject];
 firstTouch = [touch locationInView:self];
 lastTouch = [touch locationInView:self];
 [self draw];
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 UITouch *touch = [touches anyObject];
 lastTouch = [touch locationInView:self];

 [self draw];
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 lastTouch = [touch locationInView:self];

 [self draw];
}
@end

You can see that using OpenGL isn’t, by any means, easier or more concise than using Quartz
2D. Although it’s more powerful than Quartz, you’re also closer to the metal, so to speak.
OpenGL can be daunting at times.

Because this view is being loaded from a nib, we added an initWithCoder: method, and in
it, we create and assign a UIColor to currentColor. We also defaulted useRandomColor to
NO. and created our Texture2D object.

After the initWithCoder: method, we have our draw method, which is where you can really
see the difference in the approaches between the two libraries. Let’s take a look at process of
drawing a line. Here’s how we drew the line in the Quartz version (we’ve removed the code
that’s not directly relevant to drawing):

 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextSetLineWidth(context, 2.0);
 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);
 CGContextMoveToPoint(context, firstTouch.x, firstTouch.y);
 CGContextAddLineToPoint(context, lastTouch.x, lastTouch.y);
 CGContextStrokePath(context);

24594ch12.indd 431 6/25/09 6:06:14 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL432

Here are the steps we had to take in OpenGL to draw that same line. First, we reset the
virtual world so that any rotations, translations, or other transforms that might have been
applied to it are gone:

 glLoadIdentity();

Next, we clear the background to the same shade of gray that was used in the Quartz ver-
sion of the application:

 glClearColor(0.78, 0.78f, 0.78f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

After that, we have to set the OpenGL drawing color by dissecting a UIColor and pulling the
individual RGB components out of it. Fortunately, because we used the convenience class
methods, we don’t have to worry about which color model the UIColor uses. We can safely
assume it will use the RGBA color space:

 CGColorRef color = currentColor.CGColor;
 const CGFloat *components = CGColorGetComponents(color);
 CGFloat red = components[0];
 CGFloat green = components[1];
 CGFloat blue = components[2];
 glColor4f(red,green, blue, 1.0);

Next, we turn off OpenGL ES’s ability to map textures:

 glDisable(GL_TEXTURE_2D);

Any drawing code that fires from the time we make this call until there’s a call to
glEnable(GL_TEXTURE_2D) will be drawn without a texture, which is what we want. If we
allow a texture to be used, the color we just set won’t show.

To draw a line, we need two vertices, which means we need an array with four elements. As
we’ve discussed, a point in two-dimensional space is represented by two values, x and y. In
Quartz, we used a CGPoint struct to hold these. In OpenGL, points are not embedded in
structs. Instead, we pack an array with all the points that make up the shape we need to
draw. So, to draw a line from point (100, 150) to point (200, 250) in OpenGL ES, we would cre-
ate a vertex array that looked like this:

vertex[0] = 100;
vertex[1] = 150;
vertex[2] = 200;
vertex[3] = 250;

Our array has the format {x1, y1, x2, y2, x3, y3}. The next code in this method converts two
CGPoint structs into a vertex array:

24594ch12.indd 432 6/25/09 6:06:15 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 433

 GLfloat vertices[4];
 vertices[0] = firstTouch.x;
 vertices[1] = self.frame.size.height - firstTouch.y;
 vertices[2] = lastTouch.x;
 vertices[3] = self.frame.size.height - lastTouch.y;

Once we’ve defined the vertex array that describes what we want to draw (in this example,
a line), we specify the line width, pass the array into OpenGL ES using the method
 glVertexPointer(), and tell OpenGL ES to draw the arrays:

 glLineWidth(2.0);
 glVertexPointer (2, GL_FLOAT , 0, vertices);
 glDrawArrays (GL_LINES, 0, 2);

Whenever we finish drawing in OpenGL ES, we have to tell it to render its buffer, and tell our
view’s context to show the newly rendered buffer:

 glBindRenderbufferOES(GL_RENDERBUFFER_OES, viewRenderbuffer);
 [context presentRenderbuffer:GL_RENDERBUFFER_OES];

To clarify, the process of drawing in OpenGL consists of three steps. First, you draw in the
context. Second, once all your drawing is done, you render the context into the buffer. And
third, you present your render buffer, which is when the pixels actually get drawn onto the
screen.

As you can see, the OpenGL example is considerably longer. The difference between Quartz
2D and OpenGL ES becomes even more dramatic when we look at the process of drawing
an ellipse. OpenGL ES doesn’t know how to draw an ellipse. OpenGL, the big brother and
predecessor to OpenGL ES, has a number of convenience functions for generating common
two- and three-dimensional shapes, but those convenience functions are some of the func-
tionality that was stripped out of OpenGL ES to make it more streamlined and suitable for
use in embedded devices like the iPhone. As a result, a lot more responsibility falls into the
developer’s lap.

As a reminder, here is how we drew the ellipse using Quartz 2D:

 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextSetLineWidth(context, 2.0);
 CGContextSetStrokeColorWithColor(context, currentColor.CGColor);
 CGContextSetFillColorWithColor(context, currentColor.CGColor);
 CGRect currentRect;
 CGContextAddEllipseInRect(context, self.currentRect);
 CGContextDrawPath(context, kCGPathFillStroke);

24594ch12.indd 433 6/25/09 6:06:15 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL434

For the OpenGL ES version, we start off with the same steps as before, resetting any move-
ment or rotations, clearing the background to white, and setting the draw color based on
currentColor:

 glLoadIdentity();
 glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);
 glDisable(GL_TEXTURE_2D);
 CGColorRef color = currentColor.CGColor;
 const CGFloat *components = CGColorGetComponents(color);
 CGFloat red = components[0];
 CGFloat green = components[1];
 CGFloat blue = components[2];
 glColor4f(red,green, blue, 1.0);

Since OpenGL ES doesn’t know how to draw an ellipse, we have to roll our own, which
means dredging up painful memories of Ms. Picklebaum’s geometry class. We’ll define a
vertex array that holds 720 GLfloats, which will hold an x and a y position for 360 points,
one for each degree around the circle. We could change the number of points to increase or
decrease the smoothness of the circle. This approach looks good on any view that’ll fit on
the iPhone screen but probably does require more processing than strictly necessary if all
you are drawing is smaller circles.

 GLfloat vertices[720];

Next, we’ll figure out the horizontal and vertical radii of the ellipse based on the two points
stored in firstTouch and lastTouch:

 GLfloat xradius = (firstTouch.x > lastTouch.x) ?
 (firstTouch.x - lastTouch.x)/2 :
 (lastTouch.x - firstTouch.x)/2;
 GLfloat yradius = (self.frame.size.height - firstTouch.y >
 self.frame.size.height - lastTouch.y) ?
 ((self.frame.size.height - firstTouch.y) ñ
 (self.frame.size.height - lastTouch.y))/2 :
 ((self.frame.size.height - lastTouch.y) ñ
 (self.frame.size.height - firstTouch.y))/2;

Next, we’ll loop around the circle, calculating the correct points around the circle:

 for (int i = 0; i < 720; i+=2) {
 GLfloat xOffset = (firstTouch.x > lastTouch.x) ?
 lastTouch.x + xradius : firstTouch.x + xradius;
 GLfloat yOffset = (self.frame.size.height - firstTouch.y >
 self.frame.size.height - lastTouch.y) ?
 self.frame.size.height - lastTouch.y + yradius :
 self.frame.size.height - firstTouch.y + yradius;

24594ch12.indd 434 6/25/09 6:06:15 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL 435

 vertices[i] = (cos(degreesToRadian(i/2))*xradius) + xOffset;
 vertices[i+1] = (sin(degreesToRadian(i/2))*yradius) + yOffset;
 }

Finally, we’ll feed the vertex array to OpenGL ES, tell it to draw it and render it, and then tell
our context to present the newly rendered image:

 glVertexPointer (2, GL_FLOAT , 0, vertices);
 glDrawArrays (GL_TRIANGLE_FAN, 0, 360);
 glBindRenderbufferOES(GL_RENDERBUFFER_OES, viewRenderbuffer);
 [context presentRenderbuffer:GL_RENDERBUFFER_OES];

We won’t review the rectangle method, because it uses the same basic technique; we define
a vertex array with the four vertices to define the rectangle, and then we render and present
it. There’s also not much to talk about with the image drawing, since that lovely Texture2D
class from Apple makes drawing a sprite just as easy as it is in Quartz 2D. There is one impor-
tant thing to notice there, though:

 glEnable(GL_TEXTURE_2D);

Since it is possible that the ability to draw textures was previously disabled, we have to make
sure it’s enabled before we attempt to use the Texture2D class.

After the draw method, we have the same touch-related methods as the previous version.
The only difference is that instead of telling the view that it needs to be displayed, we just
the draw method. We don’t need to tell OpenGL ES what parts of the screen will be updated;
it will figure that out and leverage hardware acceleration to draw in the most efficient
 manner.

Design the Nib, Add the Frameworks, Run the App
Now, you can double-click GLFunViewController.xib and design the interface. We’re not going
to walk you through it this time, but if you get stuck, you can refer to the earlier section
called “Updating QuartzFunViewController.xib” for the specific steps. Be sure to change the
class to GLFunView instead of QuartzFunView.

Once you’re done, save and go back to Xcode.

Before we can compile and run this program, you’ll need to link in two frameworks to your
project. Follow the instruction from Chapter 7 for adding the Audio Toolbox framework but
instead of selecting AudioToolbox.framework, select OpenGLES.framework and QuartzCore.
framework.

Frameworks added? Good. Go run your project. It should look just like the Quartz version.

24594ch12.indd 435 6/25/09 6:06:15 PM

Download at Boykma.Com

CHAPTER 12: Drawing with Quartz and OpenGL436

You’ve now seen enough OpenGL ES to get you started. If you’re interested in using OpenGL
ES in your iPhone applications, you can find the OpenGL ES specification along with links to
books, documentation, and forums where OpenGL ES issues are discussed at http://www.
khronos.org/opengles/.

TIP
If you want to create a full-screen OpenGL ES application, you don’t have to build it manually. Xcode has
a template you can use. It sets up the screen and the buffers for you and even puts some sample drawing
and animation code into the class so you can see where to put your code. Want to try this out? Create a
new iPhone OS application, and choose the OpenGL ES Application template.

Drawing a Blank
In this chapter, we’ve really just scratched the surface of the iPhone’s drawing ability. You
should feel pretty comfortable with Quartz 2D now, and with some occasional references to
Apple’s documentation, you can probably handle most any drawing requirement that comes
your way. You should also have a basic understanding of what OpenGL ES is and how it inte-
grates with iPhone’s view system.

Next up? You’re going to learn how to add gestural support to your applications.

24594ch12.indd 436 6/25/09 6:06:15 PM

Download at Boykma.Com

http://www

Chapter 13

437

t
Taps, Touches,
and Gestures

he iPhone screen, with its crisp, bright, 160 pixels per inch, touch-sensitive dis-
play, is truly a thing of beauty and a masterpiece of engineering. The iPhone’s
multitouch screen is one of the key factors in iPhone’s tremendous usability.
Because the screen can detect multiple touches at the same time and track
them independently, applications are able to detect a wide range of gestures,
giving the user power that goes beyond the interface.

Suppose you are in the Mail application exploring your inbox, and you decide
to delete an e-mail. You could tap the Edit button, select the row, and then tap
the Delete button: that’s three steps. Or you could just swipe your finger across
the row you want to delete and then tap the Delete button that pops up—two
steps.

This example is just one of the countless gestures that are made possible by
iPhone’s multitouch screen. You can pinch your fingers together to zoom into
a picture or reverse pinch to zoom out. You can double-tap a frame in Mobile
Safari to zoom so that the frame takes up your entire screen. You can swipe
two fingers across a scrollable view, such as a long web page or e-mail mes-
sage, and the view will scroll, up and down, along with your fingers.

In this chapter, we’re going to look at the underlying architecture that lets you
detect gestures. You’ll learn how to detect the most common ones and learn
how to create and detect a completely new gesture.

24594ch13.indd 437 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures438

Multitouch Terminology
Before we dive into the architecture, let’s go over some basic vocabulary. First, a gesture is
any sequence of events that happens from the time you touch the screen with one or more
fingers until you lift your fingers off the screen. No matter how long it takes, as long as one
or more fingers are still against the screen, you are still within a gesture (unless a system
event, such as an incoming phone call, interrupts it). A gesture is passed through the sys-
tem inside an event. Events are generated when you interact with the iPhone’s multitouch
screen and contain information about the touch or touches that occurred.

The term touch, obviously, refers to a finger being placed on the iPhone’s screen. The num-
ber of touches involved in a gesture is equal to the number of fingers on the screen at the
same time. You can actually put all five fingers on the screen, and as long as they aren’t too
close to each other, iPhone can recognize and track them all. Now, there aren’t many useful
five-finger gestures, but it’s nice to know the iPhone can handle one if it needs to.

A tap happens when you touch the screen with a single finger and then immediately lift
your finger off the screen without moving it around. The iPhone keeps track of the number
of taps and can tell you if the user double-tapped or triple-tapped or even 20-tapped. It han-
dles all the timing and other work necessary to differentiate between two single-taps and a
double-tap, for example. It’s important to note that the iPhone only keeps track of taps when
one finger is used. If it detects multiple touches, it resets the tap count to one.

The Responder Chain
Since gestures get passed through the system inside of events, and events get passed
through the responder chain, you need to have an understanding of how the responder
chain works in order to handle gestures properly. If you’ve worked with Cocoa for Mac OS X,
you’re probably familiar with the concept of a responder chain, as the same basic mecha-
nism is used in both Cocoa and Cocoa Touch. If this is new material, don’t worry; we’ll explain
how it works.

Several times in this book, we’ve mentioned the first responder, which is usually the object
with which the user is currently interacting. The first responder is the start of the responder
chain. There are other responders as well. Any class that has UIResponder as one of its
superclasses is a responder. UIView is a subclass of UIResponder and UIControl is a
subclass of UIView, so all views and all controls are responders. UIViewController is also
a subclass of UIResponder, meaning that it is a responder, as are all of its subclasses like
UINavigationController and UITabBarController. Responders, then, are so named
because they respond to system-generated events, such as screen touches.

24594ch13.indd 438 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 439

If the first responder doesn’t handle a particular event, such as a gesture, it passes that event
up the responder chain. If the next object in the chain responds to that particular event, it
will usually consume the event, which stops the event’s progression through the responder
chain. In some cases, if a responder only partially handles an event, that responder will take
an action and forward the event to the next responder in the chain. That’s not usually what
happens, though. Normally, when an object responds to an event, that’s the end of the line
for the event. If the event goes through the entire responder chain and no object handles
the event, the event is then discarded.

Here’s another, more specific look at the responder chain. The first responder is almost
always a view or control and gets the first shot at responding to an event. If the first
responder doesn’t handle the event, it passes the event to its view controller. If the view con-
troller doesn’t consume the event, the event is then passed to the first responder’s parent
view. If the parent view doesn’t respond, the event will go to the parent view’s controller, if it
has one. The event will proceed up the view hierarchy, with each view and then that view’s
controller getting a chance to handle the event. If the event makes it all the way up through
the view hierarchy, the event is passed to the application’s window. If the window doesn’t
handle the event, it passes that event to our application’s UIApplication object instance. If
UIApplication doesn’t respond to it, the event goes gently into that good night.

This process is important for a number of reasons. First, it controls the way gestures can be
handled. Let’s say a user is looking at a table and swipes a finger across a row of that table.
What object handles that gesture?

If the swipe is within a view or control that’s a subview of the table view cell, that view or
control will get a chance to respond. If it doesn’t, the table view cell gets a chance. In an
application like Mail, where a swipe can be used to delete a message, the table view cell
probably needs to look at that event to see if it contains a swipe gesture. Most table view
cells don’t respond to gestures, however, and if they don’t, the event proceeds up to the
table view, then up the rest of the responder chain until something responds to that event
or it reaches the end of the line.

Forwarding an Event: Keeping the Responder Chain Alive
Let’s take a step back to that table view cell in the Mail application. We don’t know the inter-
nal details of Apple’s Mail application, but let’s assume, for the nonce, that the table view cell
handles the delete swipe and only the delete swipe. That table view cell has to implement
the methods related to receiving touch events (which you’ll see in a few minutes) so that it
can check to see if that event contained a swipe gesture. If the event contains a swipe, then
the table view cell takes an action, and that’s that; the event goes no further.

If the event doesn’t contain a swipe gesture, the table view cell is responsible for forwarding
that event manually to the next object in the responder chain. If it doesn’t do its forwarding

24594ch13.indd 439 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures440

job, the table and other objects up the chain will never get a chance to respond, and the
application may not function as the user expects. That table view cell could prevent other
views from recognizing a gesture.

Whenever you respond to a touch event, you have to keep in mind that your code doesn’t
work in a vacuum. If an object intercepts an event that it doesn’t handle, it needs to pass it
along manually, by calling the same method on the next responder. Here’s a bit of fictional
code:

-(void)respondToFictionalEvent:(UIEvent *)event {
 if (someCondition)
 [self handleEvent:event];
 else
 [self.nextResponder respondToFictionalEvent:event];
}

Notice how we call the same method on the next responder. That’s how to be a good
responder chain citizen. Fortunately, most of the time, methods that respond to an event
also consume the event, but it’s important to know that if that’s not the case, you have to
make sure the event gets pushed back into the responder chain.

The Multitouch Architecture
Now that you know a little about the responder chain, let’s look at the process of handling
gestures. As we’ve indicated, gestures get passed along the responder chain, embedded
in events. That means that the code to handle any kind of interaction with the multitouch
screen needs to be contained in an object in the responder chain. Generally, that means
we can either choose to embed that code in a subclass of UIView or embed the code in a
UIViewController.

So does this code belong in the view or in the view controller?

If the view needs to do something to itself based on the user’s touches, the code prob-
ably belongs in the class that defines that view. For example, many control classes, such as
UISwitch and UISlider, respond to touch-related events. A UISwitch might want to turn
itself on or off based on a touch. The folks who created the UISwitch class embedded ges-
ture-handling code in the class so the UISwitch can respond to a touch.

Often, however, when the gesture being processed affects more than the object being
touched, the gesture code really belongs in the view’s controller class. For example, if the
user makes a gesture touching one row that indicates that all rows should be deleted, the
gesture should be handled by code in the view controller. The way you respond to touches
and gestures in both situations is exactly the same, regardless of the class to which the code
belongs.

24594ch13.indd 440 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 441

The Four Gesture Notification Methods
There are four methods used to notify a responder about touches and gestures. When the
user first touches the screen, the iPhone looks for a responder that has a method called
touchesBegan:withEvent:. To find out when the user first begins a gesture or taps the
screen, implement this method in your view or your view controller. Here’s an example of
what that method might look like:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

 NSUInteger numTaps = [[touches anyObject] tapCount];
 NSUInteger numTouches = [touches count];

 // Do something here.
}

This method, and all of the touch-related methods, gets passed an NSSet instance called
touches and an instance of UIEvent. You can determine the number of fingers currently
pressed against the screen by getting a count of the objects in touches. Every object in
touches is a UITouch event that represents one finger touching the screen. If this touch is
part of a series of taps, you can find out the tap count by asking any of the UITouch objects.
Of course, if there’s more than one object in touches, you know the tap count has to be one,
because the system keeps tap counts only as long as just one finger is being used to tap the
screen. In the preceding example, if numTouches is 2, you know the user just double-tapped
the screen.

All of the objects in touches may not be relevant to the view or view controller where
you’ve implemented this method. A table view cell, for example, probably doesn’t care
about touches that are in other rows or that are in the navigation bar. You can get a subset
of touches that has only those touches that fall within a particular view from the event,
like so:

NSSet *myTouches = [event touchesForView:self.view];

Every UITouch represents a different finger, and each finger is located at a different position
on the screen. You can find out the position of a specific finger using the UITouch object. It
will even translate the point into the view’s local coordinate system if you ask it to, like this:

CGPoint point = [touch locationInView:self];

You can get notified while the user is moving fingers across the screen by implementing
touchesMoved:withEvent:. This method gets called multiple times during a long drag, and
each time it gets called, you will get another set of touches and another event. In addition to
being able to find out each finger’s current position from the UITouch objects, you can also

24594ch13.indd 441 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures442

find out the previous location of that touch, which is the finger’s position the last time either
touchesMoved:withEvent: or touchesBegan:withEvent: was called.

When the user’s fingers are removed from the screen, another event, touchesEnded:
withEvent:, is invoked. When this method gets called, you know that the user is done with
a gesture.

There’s one final touch-related method that responders might implement. It’s called
touchesCancelled:withEvent:, and it gets called if the user is in the middle of a gesture
when something happens to interrupt it, like the phone ringing. This is where you can do
any cleanup you might need so you can start fresh with a new gesture. When this method is
called, touchesEnded:withEvent: will not get called for the current gesture.

OK, enough theory—let’s see some of this in action.

The Touch Explorer Application
We’re going to build a little application that will give you
a better feel for when the four touch-related responder
methods get called. In Xcode, create a new project using the
view-based application template, and call the new project
TouchExplorer. TouchExplorer will print messages to the
screen, containing the touch and tap count, every time a
touch-related method gets called (see Figure 13-1).

NOTE
Although the applications in this chapter will run on the simu-
lator, you won’t be able to see all of the available multitouch
functionality unless you run them on an iPhone or iPod Touch. If
you’ve been accepted into the iPhone Developer Program, you
have the ability to run the programs you write on your device
of choice. The Apple web site does a great job of walking you
through the process of getting everything you need to prepare to
connect Xcode to your device.

We need three labels for this application: one to indicate
which method was last called, another to report the current tap count, and a third to report
the number of touches. Single-click TouchExplorerViewController.h, and add three outlets and
a method declaration. The method will be used to update the labels from multiple places.

Figure 13-1. The Touch
Explorer application

24594ch13.indd 442 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 443

#import <UIKit/UIKit.h>

@interface TouchExplorerViewController : UIViewController {
 UILabel *messageLabel;
 UILabel *tapsLabel;
 UILabel *touchesLabel;
}
@property (nonatomic, retain) IBOutlet UILabel *messageLabel;
@property (nonatomic, retain) IBOutlet UILabel *tapsLabel;
@property (nonatomic, retain) IBOutlet UILabel *touchesLabel;
- (void)updateLabelsFromTouches:(NSSet *)touches;
@end

Now, double-click TouchExplorerViewController.xib to
open the file in Interface Builder. If the window titled
View is not open, double-click the View icon to open
it. Drag three Labels from the library to the View win-
dow. You should resize the labels so that they take up
the full width of the view and center the text, but the
exact placement of the labels doesn’t matter. You can
also play with the fonts and colors if you’re feeling a bit
Picasso. When you’re done placing them, double-click
each label, and press the delete key to get rid of the
text that’s in them.

Control-drag from the File’s Owner icon to each of the
three labels, connecting one to the messageLabel out-
let, another to the tapsLabel outlet, and the last one to
the touchesLabel outlet. Finally, single-click the View
icon, and press ⌘1 to bring up the attributes inspector
(see Figure 13-2). On the inspector, make sure that both
User Interacting Enabled and Multiple Touch are checked.
If Multiple Touch is not checked, your controller class’s
touch methods will always receive one and only one
touch no matter how many fingers are actually touch-
ing the phone’s screen.

When you’re done, save and close the nib, and head back to Xcode.

Single-click TouchExplorerViewController.m, and add the following code at the beginning of
the file:

Figure 13-2. Making sure that the
view is set to receive multitouch
events

24594ch13.indd 443 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures444

#import "TouchExplorerViewController.h"

@implementation TouchExplorerViewController
@synthesize messageLabel;
@synthesize tapsLabel;
@synthesize touchesLabel;

- (void)updateLabelsFromTouches:(NSSet *)touches {
 NSUInteger numTaps = [[touches anyObject] tapCount];
 NSString *tapsMessage = [[NSString alloc]
 initWithFormat:@"%d taps detected", numTaps];
 tapsLabel.text = tapsMessage;
 [tapsMessage release];

 NSUInteger numTouches = [touches count];
 NSString *touchMsg = [[NSString alloc] initWithFormat:
 @"%d touches detected", numTouches];
 touchesLabel.text = touchMsg;
 [touchMsg release];
}
...

Then insert the following lines of code into the existing viewDidUnload and dealloc
 methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.messageLabel = nil;
 self.tapsLabel = nil;
 self.touchesLabel = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [messageLabel release];
 [tapsLabel release];
 [touchesLabel release];
 [super dealloc];
}
...

And add the following new methods at the end of the file:

...
#pragma mark -
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 messageLabel.text = @"Touches Began";

24594ch13.indd 444 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 445

 [self updateLabelsFromTouches:touches];

}
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event{
 messageLabel.text = @"Touches Cancelled";
 [self updateLabelsFromTouches:touches];
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 messageLabel.text = @"Touches Stopped.";
 [self updateLabelsFromTouches:touches];
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 messageLabel.text = @"Drag Detected";
 [self updateLabelsFromTouches:touches];
}
@end

In this controller class, we implement all four of the touch-related methods we discussed
earlier. Each one sets messageLabel so the user can see when each method gets called.
Next, all four of them call updateLabelsFromTouches: to update the other two labels. The
updateLabelsFromTouches: method gets the tap count from one of the touches, figures
out the number of touches by looking at the count of the touches set, and updates the
labels with that information.

Compile and run the application. If you’re running in the simulator, try repeatedly clicking
the screen to drive up the tap count, and try clicking and holding down the mouse button
while dragging around the view to simulate a touch and drag. You can emulate a two-finger
pinch in the iPhone simulator by holding down the option key while you click with the
mouse and drag. You can also simulate two-finger swipes by first holding down the option
key to simulate a pinch, then moving the mouse so the two dots representing virtual fin-
gers are next to each other, and then holding down the shift key (while still holding down
the option key). Pressing the shift key will lock the position of the two fingers relative to
each other, and you can do swipes and other two-finger gestures. You won’t be able to do
gestures that require three or more fingers, but you can do most two-finger gestures on the
simulator using combinations of the option and shift keys.

If you’re able to run this program on your iPhone or iPod touch, see how many touches you
can get to register at the same time. Try dragging with one finger, then two fingers, then
three. Try double- and triple-tapping the screen, and see if you can get the tap count to go
up by tapping with two fingers.

Play around with the TouchExplorer application until you feel comfortable with what’s hap-
pening and with the way that the four touch methods work. Once you’re ready, let’s look at
how to detect one of the most common gestures, the swipe.

24594ch13.indd 445 6/24/09 11:27:40 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures446

The Swipes Application
Create a new project in Xcode using the view-based appli-
cation template again, this time naming the project Swipes.
The application we’re about to build does nothing more
than detect swipes, both horizontal and vertical (see Figure
13-3). If you swipe your finger across the screen from left to
right, right to left, top to bottom, or bottom to top, Swipes
will display a message across the top of the screen for a few
seconds informing you that a swipe was detected.

Detecting swipes is relatively easy. We’re going to define a
minimum gesture length in pixels, which is how far the user
has to swipe before the gesture counts as a swipe. We’ll also
define a variance, which is how far from a straight line our
user can veer and still have the gesture count as a horizon-
tal or vertical swipe. A diagonal line generally won’t count
as a swipe, but one that’s just a little off from horizontal or
vertical will.

When the user touches the screen, we’ll save the location of
the first touch in a variable. Then, we’ll check as the user’s
finger moves across the screen to see if it reaches a point
where it has gone far enough and straight enough to count
as a swipe. Let’s build it.

Click SwipesViewController.h, and add the following code:

#import <UIKit/UIKit.h>

#define kMinimumGestureLength 25
#define kMaximumVariance 5

@interface SwipesViewController : UIViewController {
 UILabel *label;
 CGPoint gestureStartPoint;
}
@property (nonatomic, retain) IBOutlet UILabel *label;
@property CGPoint gestureStartPoint;
- (void)eraseText;
@end

We start by defining a minimum gesture length of 25 pixels and a variance of 5. If the user
was doing a horizontal swipe, the gesture could end up 5 pixels above or below the starting
vertical position and still count as a swipe as long as the user moved 25 pixels horizontally.

Figure 13-3. The Swipes
 application

24594ch13.indd 446 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 447

In a real application, you would probably have to play with these numbers a bit to find what
worked best for your application.

We also declare an outlet for our one label and a variable to hold the first spot the user
touches. The last thing we do is declare a method that will be used to erase the text after a
few seconds.

Double-click SwipesViewController.xib to open it in Interface Builder. Make sure that the view
is set to receive multiple touches using the attributes inspector, and drag a Label from the
library and drop it on the View window. Set up the label so it takes the entire width of the
view from blue line to blue line, and feel free to play with the text attributes to make the
label easier to read. Next, double-click the label and delete its text. Control-drag from the
File’s Owner icon to the label, and connect it to the label outlet. Save your nib, close, and go
back to Xcode.

Single-click SwipesViewController.m, and add the following code at the top:

#import "SwipesViewController.h"

@implementation SwipesViewController
@synthesize label;
@synthesize gestureStartPoint;
- (void)eraseText {
 label.text = @"";
}
...

Insert the following lines of code into the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.label = nil;
}
- (void)dealloc {
 [label release];
 [super dealloc];
}
...

And add the following methods at the bottom of the class:

#pragma mark -
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

 UITouch *touch = [touches anyObject];
 gestureStartPoint = [touch locationInView:self.view];

24594ch13.indd 447 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures448

}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 UITouch *touch = [touches anyObject];
 CGPoint currentPosition = [touch locationInView:self.view];

 CGFloat deltaX = fabsf(gestureStartPoint.x - currentPosition.x);
 CGFloat deltaY = fabsf(gestureStartPoint.y - currentPosition.y);

 if (deltaX >= kMinimumGestureLength && deltaY <= kMaximumVariance) {
 label.text = @"Horizontal swipe detected";
 [self performSelector:@selector(eraseText)
 withObject:nil afterDelay:2];
 }
 else if (deltaY >= kMinimumGestureLength &&
 deltaX <= kMaximumVariance){
 label.text = @"Vertical swipe detected";
 [self performSelector:@selector(eraseText) withObject:nil
 afterDelay:2];
 }
}
@end

Let’s start with the touchesBegan:withEvent: method. All we do there is grab any touch
from the touches set and store its point. We’re primarily interested in single-finger swipes
right now, so we don’t worry about how many touches there are; we just grab one of them.

 UITouch *touch = [touches anyObject];
 gestureStartPoint = [touch locationInView:self.view];

In the next method, touchesMoved:withEvent:, we do the real work. First, we get the cur-
rent position of the user’s finger:

 UITouch *touch = [touches anyObject];
 CGPoint currentPosition = [touch locationInView:self.view];

After that, we calculate how far the user’s finger has moved both horizontally and vertically
from its starting position. The function fabsf() is from the standard C math library that
returns the absolute value of a float. This allows us to subtract one from the other without
having to worry about which is the higher value:

 CGFloat deltaX = fabsf(gestureStartPoint.x - currentPosition.x);
 CGFloat deltaY = fabsf(gestureStartPoint.y - currentPosition.y);

Once we have the two deltas, we check to see if the user has moved far enough in one direc-
tion without having moved too far in the other to constitute a swipe. If they have, we set the
label’s text to indicate whether a horizontal or vertical swipe was detected. We also use

24594ch13.indd 448 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 449

performSelector:withObject:afterDelay:to erase the text after it’s been on the screen
for 2 seconds. That way, the user can practice multiple swipes without having to worry if the
label is referring to an earlier attempt or the most recent one:

 if (deltaX >= kMinimumGestureLength && deltaY <= kMaximumVariance) {
 label.text = @"Horizontal swipe detected";
 [self performSelector:@selector(eraseText)
 withObject:nil afterDelay:2];
 }
 else if (deltaY >= kMinimumGestureLength &&
 deltaX <= kMaximumVariance){
 label.text = @"Vertical swipe detected";
 [self performSelector:@selector(eraseText)
 withObject:nil afterDelay:2];
 }

Go ahead and compile and run. If you find yourself clicking and dragging with no visible
results, be patient. Click and drag straight down or straight across until you get the hang of
swiping.

Implementing Multiple Swipes
In the Swipes application, we only worried about single-finger swipes, so we just grabbed
any object out of the touches set to figure out where the user’s finger was during the swipe.
This approach is fine if you’re only interested in single-finger swipes, which is the most com-
mon type of swipe used.

We have a bit of a problem, however, if we want to implement two- or three-finger swipes.
That problem is that we are provided the touches as an NSSet, not as an NSArray. Sets are
unordered collections, which means that we have no easy way to figure out which finger is
which when we do comparison. We can’t assume that the first touch in the set, for example,
is referring to the same finger that was the first touch in the set back when the gesture
started.

To make matters worse, it’s completely possible that, when the user does a two- or three-
finger gesture, one finger will touch the screen before another, meaning that in the
touchesBegan:withEvent: method, we might only get informed about one touch.

We need to find a way to detect a multiple-finger swipe without falsely identifying
other gestures, such as pinches, as swipes. The solution is fairly straightforward. When
touchesBegan:withEvent: gets notified that a gesture has begun, we save one finger’s
position just as we did before. No need to save all the finger positions. Any one of them
will do.

24594ch13.indd 449 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures450

When we check for swipes, we loop through all the touches provided to the touchesMoved:
withEvent: method, comparing each one to the saved point. If the user did a multiple-
finger swipe, when comparing to the saved point, at least one of the touches we get in that
method will indicate a swipe. If we find either a horizontal or vertical swipe, we loop through
the touches again and make sure that every finger is at least the minimum distance away
from the first finger’s horizontal or vertical position, depending on the type of swipe. Let’s
retrofit the Swipes application to detect multiple-finger swipes now.

Next, we need to make a minor change to the header file, so single-click SwipesView
Controller.h, and add the following code:

#define kMinimumGestureLength 25
#define kMaximumVariance 5

typedef enum {
 kNoSwipe = 0,
 kHorizontalSwipe,
 kVerticalSwipe
} SwipeType;

#import <UIKit/UIKit.h>
...

This enumeration will give us an easy way to indicate whether a gesture is a horizontal or
vertical swipe or if no swipe was detected at all. Now, switch back to SwipesViewController.m,
and completely replace the touchesMoved:withEvent: method with this new version:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 SwipeType swipeType = kNoSwipe;
 for (UITouch *touch in touches) {
 CGPoint currentPosition = [touch locationInView:self.view];

 CGFloat deltaX = fabsf(currentPosition.x-gestureStartPoint.x);
 CGFloat deltaY = fabsf(currentPosition.y-gestureStartPoint.y);

 if (deltaX >= kMinimumGestureLength &&
 deltaY <= kMaximumVariance)
 swipeType = kHorizontalSwipe;
 else if (deltaY >= kMinimumGestureLength &&
 deltaX <= kMaximumVariance)
 swipeType = kVerticalSwipe;
 }

 BOOL allFingersFarEnoughAway = YES;
 if (swipeType != kNoSwipe) {

24594ch13.indd 450 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 451

 for (UITouch *touch in touches) {
 CGPoint currentPosition = [touch locationInView:self.view];

 CGFloat distance;
 if (swipeType == kHorizontalSwipe)
 distance = fabsf(currentPosition.x - gestureStartPoint.x);
 else
 distance = fabsf(currentPosition.y - gestureStartPoint.y);

 if (distance < kMinimumGestureLength)
 allFingersFarEnoughAway = NO;
 }
 }
 if (allFingersFarEnoughAway && swipeType != kNoSwipe {
 NSString *swipeCountString = nil;
 if ([touches count] == 2)
 swipeCountString = @"Double ";
 else if ([touches count] == 3)
 swipeCountString = @"Triple ";
 else if ([touches count] == 4)
 swipeCountString = @"Quadruple ";
 else if ([touches count] == 5)
 swipeCountString = @"Quintuple ";
 else
 swipeCountString = @"";

 NSString *swipeTypeString = (swipeType == kHorizontalSwipe) ?
 @"Horizontal" : @"Vertical";

 NSString *message = [[NSString alloc] initWithFormat:
 @"%@%@ Swipe Detected.", swipeCountString, swipeTypeString];
 label.text = message;
 [message release];
 [self performSelector:@selector(eraseText)
 withObject:nil afterDelay:2];
 }
}

Compile and run. You should be able to trigger double and triple swipes in both directions
and should still be able to trigger single swipes. If you have small fingers, you might even be
able to trigger a quadruple or quintuple swipe.

With a multiple-finger swipe, one thing to be careful of is that your fingers aren’t too close
to each other. If two fingers are very close to each other, they may register as only a single
touch. Because of this, you shouldn’t rely on quadruple or quintuple swipes for any impor-
tant gestures, because many people will have fingers that are too big to do those swipes
effectively.

24594ch13.indd 451 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures452

Detecting Multiple Taps
In the TouchExplorer application, we printed the tap count
to the screen, so you’ve already seen how easy it is to detect
multiple taps. It’s not quite as straightforward as it seems,
however, because often you will want to take different
actions based on the number of taps. If the user triple-taps,
you get notified three separate times. You get a single-tap, a
double-tap, and finally a triple-tap. If you want to do some-
thing on a double-tap but something completely different
on a triple-tap, having three separate notifications could
cause a problem. Let’s create another application to illus-
trate and then solve that problem.

In Xcode, create a new project with the view-based applica-
tion template. Call this new project TapTaps. This application
is going to have four labels, one each that informs us when
it has detected a single-tap, double-tap, triple-tap, and
quadruple tap. In the first version of the application, all four
fields will work independently, so if you tap four times, you’ll
get notified of all four tap types (see Figure 13-4).

Once we get that first version working, we’ll see how to
change its behavior so only one label appears when the
user stops tapping, showing the total number of user taps.

We need outlets for the four labels, and we also need separate methods for each tap sce-
nario to simulate what you’d have in a real application. We’ll also include a method for
erasing the text fields. Expand the Classes folder, single-click TapTapsViewController.h, and
make the following changes:

#import <UIKit/UIKit.h>

@interface TapTapsViewController : UIViewController {
 UILabel *singleLabel;
 UILabel *doubleLabel;
 UILabel *tripleLabel;
 UILabel *quadrupleLabel;
}
@property (nonatomic, retain) IBOutlet UILabel *singleLabel;
@property (nonatomic, retain) IBOutlet UILabel *doubleLabel;
@property (nonatomic, retain) IBOutlet UILabel *tripleLabel;
@property (nonatomic, retain) IBOutlet UILabel *quadrupleLabel;
- (void)singleTap;
- (void)doubleTap;

Figure 13-4. The TapTaps appli-
cation detecting all tap types
simultaneously

24594ch13.indd 452 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 453

- (void)tripleTap;
- (void)quadrupleTap;
- (void)eraseMe:(UITextField *)textField ;
@end

Save it, and then expand the Resources folder. Double-click TapTapsViewController.xib to
open the file in Interface Builder. Once you’re there add four Labels to the view from the
library. Make all four labels stretch from blue guide line to blue guide line, and then format
them however you see fit. We chose to make each label a different color but that is, by no
means, necessary. When you’re done, make sure you double-click each label and press the
delete key to get rid of any text. Now, control-drag from the File’s Owner icon to each label,
and connect each one to singleLabel, doubleLabel, tripleLabel, and quadrupleLabel, respec-
tively. Once you’ve done that, you can save and go back to Xcode.

In TapTapsViewController.m, add the following code at the top of the file:

#import "TapTapsViewController.h"

@implementation TapTapsViewController
@synthesize singleLabel;
@synthesize doubleLabel;
@synthesize tripleLabel;
@synthesize quadrupleLabel;
- (void)singleTap {
 singleLabel.text = @"Single Tap Detected";
 [self performSelector:@selector(eraseMe:)
 withObject:singleLabel afterDelay:1.6f];
}
- (void)doubleTap {
 doubleLabel.text = @"Double Tap Detected";
 [self performSelector:@selector(eraseMe:)
 withObject:doubleLabel afterDelay:1.6f];
}
- (void)tripleTap {
 tripleLabel.text = @"Triple Tap Detected";
 [self performSelector:@selector(eraseMe:)
 withObject:tripleLabel afterDelay:1.6f];
}
- (void)quadrupleTap {
 quadrupleLabel.text = @"Quadruple Tap Detected";
 [self performSelector:@selector(eraseMe:)
 withObject:quadrupleLabel afterDelay:1.6f];
}
- (void)eraseMe:(UITextField *)textField {
 textField.text = @"";
}
...

24594ch13.indd 453 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures454

Insert the following lines into the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.singleLabel = nil;
 self.doubleLabel = nil;
 self.tripleLabel = nil;
 self.quadrupleLabel = nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [singleLabel release];
 [doubleLabel release];
 [tripleLabel release];
 [quadrupleLabel release];
 [super dealloc];
}

Now, add the following code at the bottom of the file:

...
#pragma mark -
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 NSUInteger tapCount = [touch tapCount];
 switch (tapCount) {
 case 1:
 [self singleTap];
 break;
 case 2:
 [self doubleTap];
 break;
 case 3:
 [self tripleTap];
 break;
 case 4:
 [self quadrupleTap];
 break;
 default:
 break;
 }
}
@end

24594ch13.indd 454 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 455

The four tap methods do nothing more in this application than set one of the four labels and
use performSelector:withObject:afterDelay: to erase that same label after 1.6 sec-
onds. The eraseMe: method erases any label that is passed into it.

Down in touchesBegan:withEvent:, we call the four tap methods whenever we detect
the appropriate number of taps. That’s easy enough, so compile and run. If you double-tap,
you’ll see two labels displayed. If you quadruple-tap, you’ll see four labels. In some situa-
tions, this might be OK, but usually, you want to take actions based on the number of taps
that the user ended up doing.

Notice, that we don’t implement touchesEnded:withEvent: or touchesMoved:withEvent:
in this program. We don’t get notified that the user has stopped tapping, which creates a bit
of a conundrum for us. Fortunately, there’s an easy way to handle it. You’re already familiar
with the method performSelector:withObject:afterDelay:, which allows us to call a
method at some point in the future. There’s another method that allows us to cancel those
future calls before they execute. It’s an NSObject class method called cancelPreviousPerf
ormRequestsWithTarget:selector:object:. This method will stop any pending perform
requests that match the arguments passed into it, and it will help us solve our tap conun-
drum. In TapTapsViewController.m, replace the touchesBegan:withEvent: method with this
new version:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 NSUInteger tapCount = [touch tapCount];

 switch (tapCount) {
 case 1:
 [self performSelector:@selector(singleTap)
 withObject:nil
 afterDelay:.4];
 break;
 case 2:
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap)
 object:nil];
 [self performSelector:@selector(doubleTap)
 withObject:nil
 afterDelay:.4];
 break;
 case 3:
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(doubleTap)
 object:nil];
 [self performSelector:@selector(tripleTap)
 withObject:nil
 afterDelay:.4];

24594ch13.indd 455 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures456

 break;
 case 4:
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(tripleTap)
 object:nil];
 [self quadrupleTap];
 break;
 default:
 break;
 }
}

In this version, every time we detect a number of taps, instead of calling the corresponding
method immediately, we use performSelector:withObject:afterDelay: to call it
four-tenths of a second in the future, and we cancel the perform request done by our
method when the previous tap count was received. So, when we receive one tap, we call the
singleTap method four-tenths of a second in the future. When we receive notification of a
double-tap, we cancel the call to singleTap and call doubleTap four-tenths of a second in
the future. We do the same thing with triple-taps and quadruple-taps so that only one of the
four methods gets called for any particular tap sequence.

Compile and run this version, and when you double-, triple-, or quadruple-tap, you should
only see one label displayed.

Detecting Pinches
Another common gesture is the two-finger pinch. It’s used in a number of applications,
including Mobile Safari, Mail, and Photos to let you zoom in (if you pinch apart) or zoom out
(if you pinch together).

Detecting pinches is pretty easy. First, when the gesture begins, we check to make sure
there are two touches, because pinches are two-finger gestures. If there are two, we store
the distance between them. Then, as the gesture progresses, we keep checking the distance
between the user’s fingers, and if the distance increases or decreases more than a certain
amount, we know there’s been a pinch.

Create a new project in Xcode, again using the view-based application template, and call
this one PinchMe. In this project and the next one, we’re going to need to do some fairly
standard analytic geometry to calculate such things as the distance between two points (in
this project) and later the angle between two lines. Don’t worry if you don’t remember much
geometry, we’ve provided you with functions that will do the calculations for you. Look in
the 13 PinchMe folder for two files, named CGPointUtils.h and CGPointUtils.c. Drag both of
these to the Classes folder of your project. Feel free to use these utility functions in your own
applications.

24594ch13.indd 456 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 457

The PinchMe application is only going to need a single outlet for a label, but it also needs an
instance variable to hold the starting distance between the fingers and, as with the previous
applications, a method for erasing the label. We also will define a constant that identifies
the minimum change in distance between the fingers that constitutes a pinch. Expand the
Classes folder, single-click PinchMeViewController.h, and make the following changes:

#import <UIKit/UIKit.h>

#define kMinimumPinchDelta 100
@interface PinchMeViewController : UIViewController {
 UILabel *label;
 CGFloat initialDistance;
}
@property (nonatomic, retain) IBOutlet UILabel *label;
@property CGFloat initialDistance;
- (void)eraseLabel;
@end

Now that we have our outlet, expand the Resources folder, and double-click PinchMeView-
Controller.xib. In Interface Builder, make sure the view is set to accept multiple touches
(check the Multiple Touch checkbox on the attributes inspector), and drag a single label over
to it. You can place, size, and format the label any way you want. When you’re done with
it, double-click the label, and delete the text it contains. Next, control-drag from the File’s
Owner icon to the label, and connect it to the label outlet. Save and close the nib, and go
back to Xcode.

In PinchMeViewController.m, add the following code at the top of the file:

#import "PinchMeViewController.h"
#import "CGPointUtils.h"

@implementation PinchMeViewController
@synthesize label;
@synthesize initialDistance;
- (void)eraseLabel {
 label.text = @"";
}
...

Clean up our outlet in the dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.label = nil;

24594ch13.indd 457 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures458

 [super viewDidUnload];
}

- (void)dealloc {
 [label release];
 [super dealloc];
}
...

And add the following method at the end of the file:

...
#pragma mark -
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 if ([touches count] == 2) {
 NSArray *twoTouches = [touches allObjects];
 UITouch *first = [twoTouches objectAtIndex:0];
 UITouch *second = [twoTouches objectAtIndex:1];
 initialDistance = distanceBetweenPoints(
 [first locationInView:self.view],
 [second locationInView:self.view]);
 }
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 if ([touches count] == 2) {
 NSArray *twoTouches = [touches allObjects];
 UITouch *first = [twoTouches objectAtIndex:0];
 UITouch *second = [twoTouches objectAtIndex:1];
 CGFloat currentDistance = distanceBetweenPoints(
 [first locationInView:self.view],
 [second locationInView:self.view]);

 if (initialDistance == 0)
 initialDistance = currentDistance;
 else if (currentDistance - initialDistance > kMinimumPinchDelta) {
 label.text = @"Outward Pinch";
 [self performSelector:@selector(eraseLabel)
 withObject:nil
 afterDelay:1.6f];
 }
 else if (initialDistance - currentDistance > kMinimumPinchDelta) {
 label.text = @"Inward Pinch";
 [self performSelector:@selector(eraseLabel)
 withObject:nil
 afterDelay:1.6f];
 }

24594ch13.indd 458 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 459

 }
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 initialDistance = 0;
}

@end

In the touchesBegan:withEvent: method, we check to see if this touch involves two fin-
gers. If there are, we figure out the distance between the two points using a method from
CGPointUtils.c and store the result in the instance variable initialDistance.

In touchesMoved:withEvent:, we again check to see if we have two touches, and if we do,
we calculate the distance between the two touches:

 if ([touches count] == 2) {
 NSArray *twoTouches = [touches allObjects];
 UITouch *first = [twoTouches objectAtIndex:0];
 UITouch *second = [twoTouches objectAtIndex:1];
 CGFloat currentDistance = distanceBetweenPoints(
 [first locationInView:self.view],
 [second locationInView:self.view]);

The next thing we do is check to see if initialDistance is 0. We do this because it is
possible for the user’s fingers to hit the screen at different times, so it’s possible that
touchesBegan:withEvent: didn’t get called with two fingers. If initialDistance is 0, this
is the first point where both fingers are against the screen, and we store the current distance
between the points as the initial distance:

 if (initialDistance == 0)
 initialDistance = currentDistance;

Otherwise, we check to see if the initial distance subtracted from the current distance is
more than the amount we’ve defined as the minimum change needed to count as a pinch. If
so, we have an outward pinch, because the distance now is greater than the initial distance:

 else if (currentDistance - initialDistance > kMinimumPinchDelta) {
 label.text = @"Outward Pinch";
 [self performSelector:@selector(eraseLabel)
 withObject:nil
 afterDelay:1.6f];
 }

If not, we do another check for an inward pinch by looking to see if initial distance minus the
current distance is enough to qualify as a pinch:

24594ch13.indd 459 6/24/09 11:27:41 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures460

 else if (initialDistance - currentDistance > kMinimumPinchDelta) {
 label.text = @"Inward Pinch";
 [self performSelector:@selector(eraseLabel)
 withObject:nil
 afterDelay:1.6f];
 }

And that’s all there is to pinch detection. Compile and run to give it a try. If you’re on the
simulator, remember that you can simulate a pinch by holding down the option key and
clicking and dragging in the simulator window using your mouse.

Defining Custom Gestures
You’ve now seen how to detect the most commonly used iPhone gestures. The real fun
begins when you start defining your own, custom gestures!

Defining a custom gesture is tricky. You’ve already mastered
the basic mechanism, and that wasn’t too difficult. The tricky
part is being flexible when defining what constitutes a ges-
ture. Most people are not precise when they use gestures.
Remember the variance we used when we implemented the
swipe so that even a swipe that wasn’t perfectly horizontal
or vertical still counted? That’s a perfect example of the
subtlety you need to add to your own gesture definitions. If
you define your gesture too strictly, it will be useless. If you
define it too generically, you’ll get too many false positives,
which will frustrate the user. In a sense, defining a custom
gesture can be hard because you have to be precise about
a gesture’s imprecision. If you try to capture a complex ges-
ture like, say, a figure eight, the math behind detecting the
gesture is also going to get quite complex.

In our sample, we’re going to define a gesture shaped like a
checkmark (see Figure 13-5).

What are the defining properties of this checkmark ges-
ture? Well, the principal one is that sharp change in angle
between the two lines. We also want to make sure that the user’s finger has traveled a little
distance in a straight line before it makes that sharp angle. In Figure 13-5, the legs of the
checkmark meet at an acute angle, just under 90 degrees. A gesture that required exactly
an 85-degree angle would be awfully hard to get right, so we’ll define a range of acceptable
angles.

Figure 13-5. An illustration of
our checkmark gesture

24594ch13.indd 460 6/24/09 11:27:42 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures 461

Create a new project in Xcode using the view-based application template, and call the proj-
ect CheckPlease. We’re going to need a function from CGPointUtils, so add CGPointUtils.h
and CGPointUtils.c to this project’s Classes folder.

Expand the Classes folder, single-click CheckPleaseViewController.h, and make the following
changes:

#import <UIKit/UIKit.h>

#define kMinimumCheckMarkAngle 50
#define kMaximumCheckMarkAngle 135
#define kMinimumCheckMarkLength 10

@interface CheckPleaseViewController : UIViewController {
 UILabel *label;
 CGPoint lastPreviousPoint;
 CGPoint lastCurrentPoint;
 CGFloat lineLengthSoFar;
}
@property (nonatomic, retain) IBOutlet UILabel *label;
- (void)eraseLabel;
@end

You can see that we’ve defined a minimum angle of 50 degrees and a maximum angle of
135 degrees. This is a pretty broad range, and depending on your needs, you might decide
to restrict the angle. We experimented a bit with this and found that our practice checkmark
gestures fell into a fairly broad range, which is why we chose a relatively large tolerance here.
We were somewhat sloppy with our checkmark gestures, and so we expect that at least
some of our users will be as well.

Next, we define an outlet to a label that we’ll use to inform the user when we’ve
detected a checkmark gesture. We also declare three variables, lastPreviousPoint,
lastCurrentPoint, and lineLengthSoFar. Each time we’re notified of a touch, we’re given
the previous touch point and the current touch point. Those two points define a line seg-
ment. The next touch adds another segment. We store the previous touch’s previous and
current points in lastPreviousPoint and lastCurrentPoint, which gives us the previous
line segment. We can then compare that line segment to the current touch’s line segment.
Comparing these two line segments can tell us if we’re still drawing a single line or if there’s a
sharp enough angle between the two segments that we’re actually drawing a checkmark.

Remember, every UITouch object knows its current position in the view, as well as its previ-
ous position in the view. In order to compare angles, however, we need to know the line that
the previous two points made, so we need to store the current and previous points from the
last time the user touched the screen. We’ll use these two variables to store those two values

24594ch13.indd 461 6/24/09 11:27:42 AM

Download at Boykma.Com

CHAPTER 13: Taps, Touches, and Gestures462

each time this method gets called, so that we have the ability to compare the current line to
the previous line and check the angle.

We also declare a variable to keep a running count of how far the user has dragged the fin-
ger. If the finger hasn’t traveled at least 10 pixels (the value in kMinimumCheckMarkLength),
whether the angle falls in the correct range doesn’t matter. If we didn’t require this distance,
we would receive a lot of false positives.

Expand the Resources folder, and double-click CheckPleaseViewController.xib to open Inter-
face Builder. Since this is a single-finger gesture, you don’t need to turn on multitouch
support for the view, just add a Label from the library and set it up the way you want it to
look. Double-click the label to delete its text, and control-drag from the File’s Owner icon to
that label to connect it to the label outlet. Save the nib file. Now go back to Xcode, single-
click CheckPleaseViewController.m, and add the following code to the top of the file:

#import "CheckPleaseViewController.h"
#import "CGPointUtils.h"

@implementation CheckPleaseViewController
@synthesize label;
- (void)eraseLabel {
 label.text = @"";
}
...

Add the following code to the existing viewDidUnload and dealloc methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.label = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [label release];
 [super dealloc];
}
...

And add the following new methods at the bottom of the file:

...
#pragma mark -
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];

24594ch13.indd 462 6/24/09 11:27:42 AM

CHAPTER 13: Taps, Touches, and Gestures 463

 CGPoint point = [touch locationInView:self.view];
 lastPreviousPoint = point;
 lastCurrentPoint = point;
 lineLengthSoFar = 0.0f;
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 UITouch *touch = [touches anyObject];
 CGPoint previousPoint = [touch previousLocationInView:self.view];
 CGPoint currentPoint = [touch locationInView:self.view];
 CGFloat angle = angleBetweenLines(lastPreviousPoint,
 lastCurrentPoint,
 previousPoint,
 currentPoint);

 if (angle >= kMinimumCheckMarkAngle&& angle <= kMaximumCheckMarkAngle
 && lineLengthSoFar > kMinimumCheckMarkLength) {
 label.text = @"Checkmark";
 [self performSelector:@selector(eraseLabel)
 withObject:nil afterDelay:1.6];
 }

 lineLengthSoFar += distanceBetweenPoints(previousPoint, currentPoint);
 lastPreviousPoint = previousPoint;
 lastCurrentPoint = currentPoint;
}
@end

The CheckPlease Touch Methods
Let’s take a look at the touch methods. First, in touchesBegan:withEvent:, we determine
the point that the user is currently touching and store that value in lastPreviousPoint and
lastCurrentPoint. Since this method is called when a gesture begins, we know there is no
previous point to worry about, so we store the current point in both. We also reset the run-
ning line length count to 0.

Then, in touchesMoved:withEvent:, we calculate the angle between the line from the
 current touch’s previous position to its current position, and the line between the two
points stored in the lastPreviousPoint and lastCurrentPoint instance variables. Once
we have that angle, we check to see if it falls within our range of acceptable angles and
check to make sure that the user’s finger has traveled far enough before making that sharp
turn. If both of those are true, we set the label to show that we’ve identified a checkmark
gesture. Next, we calculate the distance between the touch’s position and its previous posi-
tion, add that to lineLengthSoFar, and replace the values in lastPreviousPoint and

24594ch13.indd 463 6/24/09 11:27:42 AM

CHAPTER 13: Taps, Touches, and Gestures464

lastCurrentPoint with the two points from the current touch so we’ll have them next time
through this method.

Compile and run, and try out the gesture.

When defining new gestures for your own applications, make sure you test them thoroughly,
and if you can, have other people test them for you as well. You want to make sure that your
gesture is easy for the user to do, but not so easy that it gets triggered unintentionally. You
also need to make sure that you don’t conflict with other gestures used in your application.
A single gesture should not count, for example, as both a custom gesture and a pinch.

Garçon? Check, Please!
Well, you should now understand the mechanism the iPhone uses to tell your application
about touches, taps, and gestures. You also know how to detect the most commonly used
iPhone gestures and even got a taste of how you might go about defining your own custom
gestures. The iPhone’s interface relies on gestures for much of its ease of use, so you’ll want
to have these techniques at the ready for most of your iPhone development.

When you’re ready to move on, turn the page, and we’ll tell you how to figure out where in
the world you are using Core Location.

24594ch13.indd 464 6/24/09 11:27:42 AM

Chapter 14

465

y

Where Am I?
Finding Your Way
with Core Location

our iPhone has the ability to determine where in the world it is using a
framework called Core Location. There are actually three technologies that
Core Location can leverage to do this: GPS, cell tower triangulation, and
Wi-Fi Positioning Service (WPS). GPS is the most accurate of the three but is
not available on first-generation iPhones. GPS reads microwave signals from
multiple satellites to determine the current location. Cell tower triangulation
determines the current location by doing a calculation based on the locations
of the cell towers in the phone’s range. Cell tower triangulation can be fairly
accurate in cities and other areas with a high cell tower density but becomes
less accurate in areas where there is a greater distance between towers. The
last option, WPS, uses the IP address from iPhone’s Wi-Fi connection to make
a guess at your location by referencing a large database of known service
providers and the areas they service. WPS is imprecise and can be off by many
miles.

All three methods put a noticeable drain on iPhone’s battery, so keep that in
mind when using Core Location. Your application shouldn’t poll for location
any more often than is absolutely necessary. When using Core Location, you
have the option of specifying a desired accuracy. By carefully specifying the
absolute minimum accuracy level you need, you can prevent unnecessary
 battery drain.

The technologies that Core Location depends on are hidden from your appli-
cation. We don’t tell Core Location whether to use GPS, triangulation, or WPS.

24594ch14.indd 465 6/24/09 11:31:20 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location466

We just tell it how accurate we would like it to be, and it will decide from the technologies
available to it which is best for fulfilling your request.

The Location Manager
The Core Location API is actually fairly easy to work with. The main class we’ll work with is
CLLocationManager, usually referred to as the Location Manager. In order to interact with
Core Location, we need to create an instance of the Location Manager, like this:

CLLocationManager *locationManager = [[CLLocationManager alloc] init];

This creates an instance of the Location Manager for us, but it doesn’t actually start polling
for our location. We have to assign a delegate to the Location Manager. The Location Man-
ager will call delegate methods when location information becomes available or changes.
The process of determining location may take some time, even a few seconds. The delegate
must conform to the CLLocationManagerDelegate protocol.

Setting the Desired Accuracy
After you set the delegate, you also want to set the requested accuracy. As we said before,
don’t specify a degree of accuracy any greater than you absolutely need. If you’re writing
an application that just needs to know which state or country the phone is in, don’t specify
a high level of precision. Remember, the more accuracy you demand of Core Location, the
more juice you’re likely to use. Also, keep in mind that there is no guarantee that you will get
the level of accuracy that you have requested.

Here’s an example of setting the delegate and requesting a specific level of accuracy:

locationManager.delegate = self;
locationManager.desiredAccuracy = kCLLocationAccuracyBest;

The accuracy is set using a CLLocationAccuracy value, a type that’s defined as a double.
The value is in meters, so if you specify a desiredAccuracy of 10, you’re telling Core Loca-
tion that you want it to try to determine the current location within 10 meters, if possible.
Specifying kCLLocationAccuracyBest, as we did previously, tells Core Location to use the
most accurate method that’s currently available. In addition to kCLLocationAccuracyBest,
you can also use kCLLocationAccuracyNearestTenMeters, kCLLocationAccuracy
HundredMeters, kCLLocationAccuracyKilometer, and kCLLocationAccuracyThree
Kilometers.

Setting the Distance Filter
By default, the Location Manager will notify the delegate of any detected change in location.
By specifying a distance filter, you are telling Location Manager not to notify you for every

24594ch14.indd 466 6/24/09 11:31:20 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location 467

change and to notify you only when the location changes more than a certain amount.
Setting up a distance filter can reduce the amount of polling that your application does.
Distance filters are also set in meters. Specifying a distance filter of 1000 tells the Location
Manager not to notify its delegate until the iPhone has moved at least 1,000 meters from its
previously reported position. Here’s an example:

locationManager.distanceFilter = 1000.0f;

If you ever want to return the Location Manager to the default setting of no filter, you can
use the constant kCLDistanceFilterNone, like this:

locationManager.distanceFilter = kCLDistanceFilterNone;

Starting the Location Manager
When you’re ready to start polling for location, you tell the Location Manager to start, and
it will then go off and do its thing and then call a delegate method when it has determined
the current location. Until you tell it to stop, it will continue to call your delegate method
whenever it senses a change that exceeds the current distance filter. Here’s how you start the
Location Manager:

[locationManager startUpdatingLocation];

Using the Location Manager Wisely
If you need to determine the current location only and have no need to continuously poll
for location, you should have your location delegate stop the Location Manager as soon as
it gets the information your application needs. If you need to continuously poll, make sure
you stop polling as soon as you possibly can. Remember, as long as you are getting updates
from the Location Manager, you are putting a strain on the user’s battery. To tell the Location
Manager to stop sending updates to its delegate, call stopUpdatingLocation, like this:

[locationManager stopUpdatingLocation];

The Location Manager Delegate
The Location Manager delegate must conform to the CLLocationManagerDelegate proto-
col, which defines two methods, both of which are optional. One of these methods is called
by the Location Manager when it has determined the current location or when it detects a
change in location. The other method is called when the Location Manager encounters an
error.

24594ch14.indd 467 6/24/09 11:31:20 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location468

Getting Location Updates
When the Location Manager wants to inform its delegate of the current location, it calls the
locationManager:didUpdateToLocation:fromLocation: method. This method has three
parameters. The first parameter is the Location Manager that called the method. The second
is a CLLocation object that defines the current location of the iPhone, and the third is a
CLLocation object that defines the previous location from the last update. The first time this
method is called, the previous location object will be nil.

Getting Latitude and Longitude Using CLLocation
Location information is passed from the Location Manager using instances of the
 CLLocation class. This class has five properties that might be of interest to your application.
The latitude and longitude are stored in a property called coordinate. To get the latitude
and longitude in degrees, do this:

CLLocationDegrees latitude = theLocation.coordinate.latitude;
CLLocationDegrees longitude = theLocation.coordinate.longitude;

The CLLocation object can also tell you how confident the
Location Manager is in its latitude and longitude calcula-
tions. The horizontalAccuracy property describes the
radius of a circle with the coordinate as its center. The
larger the value in horizontalAccuracy, the less certain
Core Location is of the location. A very small radius indicates
a high level of confidence in the determined location.

You can see a graphic representation of horizontalAc-
curacy in the Maps application (see Figure 14-1). The blue
circle shown in Maps uses horizontalAccuracy for its
radius when it detects your location. The Location Manager
thinks you are at the center of that circle. If you’re not, you’re
almost certainly somewhere inside the blue circle. A nega-
tive value in horizontalAccuracy is an indication that you
cannot rely on the values in coordinate for some reason.

The CLLocation object also has a property called altitude
that can tell you how many meters above or below sea level
you are:

CLLocationDistance altitude = theLocation.
altitude;

Figure 14-1. The Maps appli-
cation uses Core Location to
determine your current loca-
tion. The blue circle is a visual
representation of the horizontal
accuracy.

24594ch14.indd 468 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location 469

Each CLLocation object maintains a property called verticalAccuracy that is an indi-
cation of how confident Core Location is in its determination of altitude. The value in
altitude could be off by as many meters as the value in verticalAccuracy, and if the
 verticalAccuracy value is negative, Core Location is telling you it could not determine
a valid altitude.

CLLocation objects also have a timestamp that tells when the Location Manager made the
location determination.

In addition to these properties, CLLocation also has a useful instance method that will
let you determine the distance between two CLLocation objects. The method is called
 getDistanceFrom:, and it works like this:

CLLocationDistance distance = [fromLocation getDistanceFrom:toLocation];

The preceding line of code will return the distance between two CLLocation objects,
 fromLocation and toLocation. This distance value returned will be the result of a great-
circle distance calculation that ignores the altitude property and calculates the distance as if
both points were at sea level. For most purposes, a great-circle calculation will be more than
sufficient, but if you do need to take altitude into account when calculating distances, you’ll
have to write your own code to do it.

Error Notifications
If Core Location is not able to determine your current
 location, it will call a second delegate method named
locationManager:didFailWithError:. The most likely
cause of an error is that the user denies access. Location
Manager use has to be authorized by the user, so the first
time your application goes to determine the location,
an alert will pop up on the screen asking the user if it’s
OK for the current program to access your location (see
Figure 14-2).

If the user clicks the Don’t Allow button, your delegate will
be notified of the fact by the Location Manager using the
locationManager:didFailWithError: with an error
code of kCLErrorDenied. At the time of this writing, the
only other error code supported by Location Manager is
 kCLErrorLocationUnknown, which indicates that Core
Location was unable to determine the location but that
it will keep trying. The kCLErrorDenied error generally
indicates that your application will not be able to access

Figure 14-2. Location Manager
access has to be approved by
the user.

24594ch14.indd 469 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location470

Core Location any time during the remainder of the current session. On the other hand,
 kCLErrorLocationUnknown errors indicate a problem that may be temporary.

NOTE
When working in the simulator, you will not be prompted for access to Core Location, and location will be
determined using a super secret algorithm kept in a locked vault buried deep beneath Apple headquarters
in Cupertino.

Trying Out Core Location
Let’s build a small application to detect the iPhone’s current location and the total distance
traveled while the program has been running. You can see what our final application will
look like in Figure 14-3.

Figure 14-3. The WhereAmI application in action.
This screenshot was taken in the simulator. Notice
that the vertical accuracy is a negative number,
which tells us it couldn’t determine the altitude.

In Xcode, create a new project using the view-based application template, and call
the project WhereAmI. Expand the Classes and Resources folders, and single-click
WhereAmIViewController.h. Make the following changes, which we’ll discuss in a moment:

24594ch14.indd 470 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location 471

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface WhereAmIViewController :
 UIViewController <CLLocationManagerDelegate> {
 CLLocationManager *locationManager;

 CLLocation *startingPoint;

 UILabel *latitudeLabel;
 UILabel *longitudeLabel;
 UILabel *horizontalAccuracyLabel;
 UILabel *altitudeLabel;
 UILabel *verticalAccuracyLabel;
 UILabel *distanceTraveledLabel;
}
@property (retain, nonatomic) CLLocationManager *locationManager;
@property (retain, nonatomic) CLLocation *startingPoint;
@property (retain, nonatomic) IBOutlet UILabel *latitudeLabel;
@property (retain, nonatomic) IBOutlet UILabel *longitudeLabel;
@property (retain, nonatomic) IBOutlet UILabel *horizontalAccuracyLabel;
@property (retain, nonatomic) IBOutlet UILabel *altitudeLabel;
@property (retain, nonatomic) IBOutlet UILabel *verticalAccuracyLabel;
@property (retain, nonatomic) IBOutlet UILabel *distanceTraveledLabel;
@end

The first thing to notice is that we’ve included the Core Location header files. Core Location
is not part of the UIKit, so we need to include the header files manually. Next, we conform
this class to the CLLocationManagerDelegate method so that we can receive location infor-
mation from the Location Manager.

After that, we declare a CLLocationManager pointer, which will be used to hold the instance
of the Core Location we create. We also declare a pointer to a CLLocation, which we will set
to the location we receive in the first update from the Location Manager. This way, if the user
has our program running and moves far enough to trigger updates, we’ll be able to calculate
how far our user moved. Our delegate will be notified of the previous location with each call,
but not the original starting location, which is why we store it.

The remaining instance variables are all outlets that will be used to update labels on the user
interface.

Double-click WhereAmIViewController.xib to open Interface Builder. Using Figure 14-3 as your
guide, drag 12 Labels from the library to the View window. Six of them should be placed on
the left side of the screen, right justified, and made bold. Give the six bold labels the values
Latitude:, Longitude:, Horizontal Accuracy:, Altitude:, Vertical Accuracy:, and Distance Traveled:.
The other six should be left justified and placed next to each of the bold labels. Each of the

24594ch14.indd 471 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location472

labels on the right side should be connected to the appropriate outlet we defined in the
header file earlier. Once you have all six attached to outlets, double-click each one in turn,
and delete the text it holds. Save and go back to Xcode.

Single-click WhereAmIViewController.m, and make the following changes at the top of
the file:

#import "WhereAmIViewController.h"

@implementation WhereAmIViewController
@synthesize locationManager;
@synthesize startingPoint;
@synthesize latitudeLabel;
@synthesize longitudeLabel;
@synthesize horizontalAccuracyLabel;
@synthesize altitudeLabel;
@synthesize verticalAccuracyLabel;
@synthesize distanceTraveledLabel;

#pragma mark -
- (void)viewDidLoad {
 self.locationManager = [[CLLocationManager alloc] init];
 locationManager.delegate = self;
 locationManager.desiredAccuracy = kCLLocationAccuracyBest;
 [locationManager startUpdatingLocation];
}
...

Insert the following lines in viewDidUnload and dealloc to clean up our outlets:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.locationManager = nil;
 self.latitudeLabel = nil;
 self.longitudeLabel = nil;
 self.horizontalAccuracyLabel = nil;
 self.altitudeLabel = nil;
 self.verticalAccuracyLabel = nil;
 self.distanceTraveledLabel= nil;
 [super viewDidUnload];
}
- (void)dealloc {
 [locationManager release];
 [startingPoint release];
 [latitudeLabel release];
 [longitudeLabel release];

24594ch14.indd 472 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location 473

 [horizontalAccuracyLabel release];
 [altitudeLabel release];
 [verticalAccuracyLabel release];
 [distanceTraveledLabel release];
 [super dealloc];
}
...

And insert the following new methods at the end of the file:

...
#pragma mark -
#pragma mark CLLocationManagerDelegate Methods
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {

 if (startingPoint == nil)
 self.startingPoint = newLocation;

 NSString *latitudeString = [[NSString alloc] initWithFormat:@"%g°",
 newLocation.coordinate.latitude];
 latitudeLabel.text = latitudeString;
 [latitudeString release];

 NSString *longitudeString = [[NSString alloc] initWithFormat:@"%g°",
 newLocation.coordinate.longitude];
 longitudeLabel.text = longitudeString;
 [longitudeString release];

 NSString *horizontalAccuracyString = [[NSString alloc]
 initWithFormat:@"%gm",
 newLocation.horizontalAccuracy];
 horizontalAccuracyLabel.text = horizontalAccuracyString;
 [horizontalAccuracyString release];

 NSString *altitudeString = [[NSString alloc] initWithFormat:@"%gm",
 newLocation.altitude];
 altitudeLabel.text = altitudeString;
 [altitudeString release];

 NSString *verticalAccuracyString = [[NSString alloc]
 initWithFormat:@"%gm",
 newLocation.verticalAccuracy];
 verticalAccuracyLabel.text = verticalAccuracyString;
 [verticalAccuracyString release];

24594ch14.indd 473 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location474

 CLLocationDistance distance = [newLocation
 getDistanceFrom:startingPoint];
 NSString *distanceString = [[NSString alloc]
 initWithFormat:@"%gm", distance];
 distanceTraveledLabel.text = distanceString;
 [distanceString release];
}

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {

 NSString *errorType = (error.code == kCLErrorDenied) ?
 @"Access Denied" : @"Unknown Error";
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error getting Location"
 message:errorType
 delegate:nil
 cancelButtonTitle:@"Okay"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

}
@end

In the viewDidLoad method, we allocate and initialize a CLLocationManager instance,
assign our controller class as the delegate, set the desired accuracy to the best available,
and then tell our Location Manager instance to start giving us location updates:

- (void)viewDidLoad {
 self.locationManager = [[CLLocationManager alloc] init];
 locationManager.delegate = self;
 locationManager.desiredAccuracy = kCLLocationAccuracyBest;
 [locationManager startUpdatingLocation];
}

Updating Location Manager
Since this class designated itself as the Location Manager’s delegate, we know that location
updates will come in to this class if we implement the delegate method locationmanager:
didUpdateToLocation:fromLocation:, so let’s look at our implementation of that method.
The first thing we do in that method is check to see whether startingPoint is nil. If it is,
then this update is the first one from the Location Manager, and we assign the current loca-
tion to our startingPoint property.

 if (startingPoint == nil)
 self.startingPoint = newLocation;

24594ch14.indd 474 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location 475

After that, we update the first six labels with values from the CLLocation object passed in
the newLocation argument:

 NSString *latitudeString = [[NSString alloc] initWithFormat:@"%g°",
 newLocation.coordinate.latitude];
 latitudeLabel.text = latitudeString;
 [latitudeString release];

 NSString *longitudeString = [[NSString alloc] initWithFormat:@"%g°",
 newLocation.coordinate.longitude];
 longitudeLabel.text = longitudeString;
 [longitudeString release];

 NSString *horizontalAccuracyString = [[NSString alloc]
 initWithFormat:@"%gm",
 newLocation.horizontalAccuracy];
 horizontalAccuracyLabel.text = horizontalAccuracyString;
 [horizontalAccuracyString release];

 NSString *altitudeString = [[NSString alloc] initWithFormat:@"%gm",
 newLocation.altitude];
 altitudeLabel.text = altitudeString;
 [altitudeString release];

 NSString *verticalAccuracyString = [[NSString alloc]
 initWithFormat:@"%gm",
 newLocation.verticalAccuracy];
 verticalAccuracyLabel.text = verticalAccuracyString;
 [verticalAccuracyString release];

TIP
You can type the degree symbol (°) by pressing ⇧⌥8.

Determining Distance Traveled
Finally, we determine the distance between the current location and the location stored in
startingPoint and display the distance. While this application runs, if the user moves far
enough for the Location Manager to detect the change, the Distance Traveled: field will get
continually updated with the distance away from where the user’s were when the applica-
tion was started.

 CLLocationDistance distance = [newLocation
 getDistanceFrom:startingPoint];
 NSString *distanceString = [[NSString alloc]

24594ch14.indd 475 6/24/09 11:31:21 AM

CHAPTER 14: Where Am I? Finding Your Way with Core Location476

 initWithFormat:@"%gm", distance];
 distanceTraveledLabel.text = distanceString;
 [distanceString release];

And there you have it. Core Location is fairly straightforward and easy to use. Before you
can compile this program, you have to add CoreLocation.framework to your project. You do
this exactly the same as you did in Chapter 7 when you added the AudioToolbox.framework,
except you choose CoreLocation.framework instead of CoreGraphics.framework after navigat-
ing to the appropriate Frameworks folder. Compile and run the application, and try it. If you
have the ability to run the application on your iPhone, try going for a drive with the applica-
tion running and watch the values change as you drive. Um, actually, better have someone
else do the driving!

Wherever You Go, There You Are
You’ve now seen pretty much all there is to Core Location. Although the underlying tech-
nology is quite complex, Apple has provided a simple interface that hides most of the
complexity, making it quite easy to add location-related features to your applications, so
you can tell where the users are and identify when they move.

And speaking of moving, when you’re ready, proceed directly to the next chapter so we can
play with iPhone’s built-in accelerometer.

24594ch14.indd 476 6/24/09 11:31:21 AM

Chapter 15

477

o
Whee!
Accelerometer!

ne of the coolest features of the iPhone and iPod Touch is the built-in acceler-
ometer, the tiny device that lets the iPhone know how it’s being held and if it’s
being moved. The iPhone OS uses the accelerometer to handle autorotation,
and many games use it as a control mechanism. It can also be used to detect
shakes and other sudden movement.

Accelerometer Physics
An accelerometer measures both acceleration and gravity by sensing the
amount of inertial force in a given direction. The accelerometer inside iPhone
is a three-axis accelerometer, meaning that it is capable of detecting either
movement or the pull of gravity in three-dimensional space. As a result, you
can use the accelerometer to tell not only how the phone is currently being
held (as autorotation does) but also if it’s laying on a table and even whether
it’s face down or face up.

Accelerometers give measurements in g-forces (“g” for gravity), so a value of
1.0 returned by the accelerometer means that 1 g is sensed in a particular
direction. If the iPhone is being held still with no movement, there will be
approximately 1 g of force exerted on it by the pull of the earth. If the iPhone
is being held perfectly upright, in portrait orientation, the iPhone will detect
and report about 1 g of force exerted on its y axis. If the iPhone is being held
at an angle, that 1 g of force will be distributed along different axes depending
on how the iPhone is being held. When held at a 45-degree angle, that 1 g of
force will be split roughly equally between two of the axes.

24594ch15.indd 477 6/24/09 11:37:59 AM

CHAPTER 15: Whee! Accelerometer!478

Sudden movement can be detected by looking for accelerometer values considerably larger
than 1 g. In normal usage, the accelerometer does not detect significantly more than 1 g on
any axis. If you shake, drop, or throw your iPhone, the accelerometer will detect a greater
amount of force on one or more axes. Please do not drop or throw your own iPhone to test
this theory.

You can see a graphic representation of the three axes used by iPhone’s accelerometer in
Figure 15-1. One thing to notice is that the accelerometer uses the more standard conven-
tion for the y coordinate, with increases in y indicating upward force, which is the opposite
of Quartz 2D’s coordinate system. When you are using the accelerometer as a control mecha-
nism with Quartz 2D, you have to translate the y coordinate. When working with OpenGL ES,
which you are more likely to be using if you are using the accelerometer to control anima-
tion, no translation is required.

Figure 15-1. The iPhone accelerometer’s axes in three dimensions

Accessing the Accelerometer
The UIAccelerometer class exists as a singleton. To retrieve a reference to the class, call the
method sharedAccelerometer, like so:

UIAccelerometer *accelerometer = [UIAccelerometer sharedAccelerometer];

Getting information from the accelerometer is similar to getting information from Core
Location. You create a class that conforms to the UIAccelerometerDelegate protocol,
implement a method to which the accelerometer will provide information, and specify an
instance of that class to be the accelerometer’s delegate.

24594ch15.indd 478 6/24/09 11:37:59 AM

CHAPTER 15: Whee! Accelerometer! 479

When you assign a delegate, you need to specify an update interval in seconds. iPhone’s
accelerometer supports polling at a rate of up to 100 times per second, although there is
no guarantee that it will actually update you that many times or that those updates will be
exactly evenly spaced. To assign a delegate and specify a polling interval of 60 times per sec-
ond, you would do this:

accelerometer.delegate = self;
accelerometer.updateInterval = 1.0f/60.0f;

Once you’ve done that, all that’s left is to implement the method that the accelerometer
uses to update its delegate, accelerometer:didAccelerate:. This method takes two argu-
ments. The first is a reference to the shared UIAccelerometer instance. The second contains
the actual data from the accelerometer, embedded in an object of the class UIAcceleration.
Before we look at the delegate method, let’s talk about the UIAcceleration object that’s
used to pass the information to the delegate.

UIAcceleration
We mentioned earlier that the iPhone’s acceler-
ometer detects acceleration along three axes,
and it provides this information to the delegate
using instances of the UIAcceleration class.
Each UIAcceleration instance has an x, y, and
z property, each of which holds a signed float-
ing point value. A value of 0 means that the
accelerometer detects no movement on that
particular axis. A positive or negative value
indicates force in one direction. For example, a
negative value for y indicates that downward
pull is sensed, which is probably an indication
that the phone is being held upright in portrait
orientation. A positive value for y indicates
some force is being exerted in the opposite
direction, which could mean the phone is
being held upside down or that the phone is
being moved in an upward direction.

Keeping the diagram in Figure 15-1 in mind,
let’s look at some accelerometer results. Note
that, in real life, you will almost never get
values this precise, as the accelerometer is
sensitive enough to pick up even tiny amounts
of motion, and you will usually pick up at least

Figure 15-2. Idealized acceleration values for
different device orientations

24594ch15.indd 479 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer!480

some tiny amount of force on all three axes. This is real-world physics and not high school
physics lab.

Implementing the accelerometer:didAccelerate: Method
In order to receive accelerometer information, the class you specify as the accelerometer’s
delegate needs to implement the accelerometer:didAccelerate: method. If you wanted
to display the acceleration values in a UILabel, you might implement that method like this:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 NSString *newText = [[NSString alloc]
 initWithFormat:@"x: %g\ty:%g\tz:%g", acceleration.x,
 acceleration.y, acceleration.z];
 label.text = newText;
 [newText release];
}

This method would update a label on the interface every time it was called. How frequently
this method gets called is based on the updateInterval value you specified earlier.

Detecting Shakes
One fairly common use of the accelerometer in applications is to detect a shake. Like a ges-
ture, a shake can be used as a form of input to your application. For example, the drawing
program GLPaint, which is one of the iPhone sample code projects, lets the user erase draw-
ings by shaking the iPhone, sort of like an Etch-a-Sketch.

Detecting shakes is relatively trivial; all it requires is checking for an absolute value on one
of the axes that is greater than a set threshold. During normal usage, it’s not uncommon
for one of the three axes to register values up to around 1.3 gs, but much higher than that
generally requires intentional force. The accelerometer seems to be unable to register values
higher than around 2.3 gs (at least on first-generation iPhones), so you don’t want to set
your threshold any higher than that.

To detect a shake, you could check for an absolute value greater than 1.5 for a slight shake
and 2.0 for a strong shake, like this:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {

 if (fabsf(acceleration.x) > 2.0
 || fabsf(acceleration.y) > 2.0
 || fabsf(acceleration.z) > 2.0) {
 // Do something here...
 }
}

24594ch15.indd 480 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer! 481

The preceding method would detect any movement on any axis that exceeded two g-forces.
You could implement more sophisticated shake detection by requiring the user to shake
back and forth a certain number of times to register as a shake, like so:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {

 static NSInteger shakeCount = 0;
 static NSDate *shakeStart;

 NSDate *now = [[NSDate alloc] init];
 NSDate *checkDate = [[NSDate alloc] initWithTimeInterval:1.5f
 sinceDate:shakeStart];
 if ([now compare:checkDate] ==
 NSOrderedDescending || shakeStart == nil) {
 shakeCount = 0;
 [shakeStart release];
 shakeStart = [[NSDate alloc] init];
 }
 [now release];
 [checkDate release];

 if (fabsf(acceleration.x) > 2.0
 || fabsf(acceleration.y) > 2.0
 || fabsf(2.0.z) > 2.0) {
 shakeCount++;
 if (shakeCount > 4) {
 // Do something
 shakeCount = 0;
 [shakeStart release];
 shakeStart = [[NSDate alloc] init];
 }
 }
}

This method keeps track of the number of times the accelerometer reports a value above
2.0, and if it happens four times within a second and a half span of time, it registers as a
shake.

24594ch15.indd 481 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer!482

BAKED-IN SHAKING
There’s actually another way to check for shakes, one that’s baked right into the responder chain.
Remember back in Chapter 13, how we implemented methods like touchesBegan:withEvent:
to detect touches? Well, starting with SDK3, there are now three similar responder methods for detect-
ing motion. When motion begins, the motionBegan:withEvent: method gets sent to the first
responder and then on through the responder chain as discussed in Chapter 13. When the motion ends, the
motionEnded:withEvent: method gets sent to the first responder. If the phone rings, or some other
interrupting action happens during the shake, the motionCancelled:withEvent: message gets
sent to the first responder.

This means that you can actually detect a shake without using UIAccelerometer directly. All you have
to do is override the appropriate motion-sensing methods in your view or view controller, and they will get
automatically called when the user shakes their phone. Unless you specifically need more control over the
shake gesture, you should use the baked-in motion detection rather than manual method in this chapter, but
we thought we’d show you the manual method in case you ever do need more control.

Accelerometer as Directional Controller
Probably the most common usage of the accelerometer in third-party applications is as a
controller for games. Instead of using buttons to control the movement of a character or
object in a game, the accelerometer is used. In a car racing game, for example, twisting the
iPhone like a steering wheel might steer your car, while tipping it forward might accelerate
and tipping back might brake.

Exactly how you use the accelerometer as a controller is going to vary greatly depending
on the specific mechanics of the game. In the simplest cases, you might just take the value
from one of the axes, multiply it by a number, and tack that on to the coordinates of the
controlled objects. In more complex games where physics are modeled more realistically,
you would have to make adjustments to the velocity of the controlled object based on the
values returned from the accelerometer.

The one tricky aspect of using the accelerometer as a controller is that the delegate method
is not guaranteed to call back at the interval you specify. If you tell the accelerometer to
update your delegate class 60 times a second, all that you can say for sure is that it won’t
update you more than 60 times a second. You’re not guaranteed to get 60 evenly spaced
updates every second, so if you’re doing animation based on input from the accelerometer,
you have to keep track of the time that passes between delegate method calls and factor
that into your equations to determine how far objects have moved.

We’ll create a program that uses the accelerometer for input a little later in the chapter, but
first, we’re going to break your phone.

24594ch15.indd 482 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer! 483

NOTE
The applications in this chapter do not function on the simulator because the simulator has no
 accelerometer. Aw, shucks.

Shake and Break
OK, we’re not really going to break your phone, but we’re going to write an application that
detects shakes and then makes your phone look and sound like it broke as a result of the
shake. When you launch the application, the program will display a picture that looks like
the iPhone home screen (see Figure 15-3).

Shake the phone hard enough, though, and your poor phone will make a sound that you
never want to hear coming out of a consumer electronics device. What’s more, your screen
will look like the one shown in Figure 15-4. Why do we do these evil things?

Not to worry. You can reset the iPhone to its previously pristine state by touching the screen.

Figure 15-3. The ShakeAndBreak Figure 15-4. . . . but handle it too roughly
application looks innocuous enough. . . and—oh no!

24594ch15.indd 483 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer!484

The Code That Breaks
Create a new project in Xcode using the view-based application template. Call the new proj-
ect ShakeAndBreak. In the 15 ShakeAndBreak folder of the project archive, we’ve provided
you the two images and the sound file you need for this application, so drag home.png,
homebroken.png, and glass.wav to the Resources folder of your project. There’s also an icon.
png in that folder. Add that to the Resources folder as well.

NOTE
Just for completeness, we’ve included a modified version of Shake and Break in the project archives
based on the 3.0 shake detection method. You’ll find it in the project archive in a folder named
15 ShakeAndBreak - Motion Methods. The magic is in ShakeAndBreakViewController’s
motionEnded:withEvent: method.

Next, expand the Resources folder, and single-click ShakeAndBreak-Info.plist. We need to add
an entry to the property list to tell our application not to use a status bar, so single-click the
row that says Information Property List, and click the button that appears at the end of the
row to add a new child. Change the new row’s Key to UIStatusBarHidden. After you change
the key, the Value column should change to a checkbox. If it doesn’t change automatically,
control-click (or right-click if you have a two-button mouse) the empty Value column in the
row you just added. A contextual menu should appear (see Figure 15-5). From that menu,
select the Value Type submenu, and then select Boolean. Now, click the checkbox so that it
is checked. Finally, type icon.png in the Value column next to the Icon file key.

Figure 15-5. Changing the Value Type for UIStatusBarHidden

24594ch15.indd 484 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer! 485

Now, expand the Classes folder. We’re going to need to create an outlet to point to an image
view so that we can change the displayed image. We’ll also need a couple of UIImage
instances to hold the two pictures, a sound ID to refer to the sound, and a Boolean to keep
track of whether the screen needs to be reset. Single-click ShakeAndBreakViewController.h,
and add the following code:

#import <UIKit/UIKit.h>
#import <AudioToolbox/AudioToolbox.h>

#define kAccelerationThreshold 2.2
#define kUpdateInterval (1.0f/10.0f)

@interface ShakeAndBreakViewController :
 UIViewController <UIAccelerometerDelegate> {
 UIImageView *imageView;

 BOOL brokenScreenShowing;
 SystemSoundID soundID;
 UIImage *fixed;
 UIImage *broken;
}
@property (nonatomic, retain) IBOutlet UIImageView *imageView;
@property (nonatomic, retain) UIImage *fixed;
@property (nonatomic, retain) UIImage *broken;
@end

Save the header file, and double-click ShakeAndBreakViewController.xib to open the file in
Interface Builder. Single-click the View icon. First, press ⌘1 to bring up the attribute inspec-
tor, and change the Status Bar pop-up under Simulated User Interface Elements from Gray to
None. Now, drag an Image View over from the library to the window labeled View. The image
view should automatically resize to take up the full window, so just place it so that it sits per-
fectly within the window.

Control-drag from the File’s Owner icon to the image view, and select the imageView outlet.
Now, save and close the nib file, and go back to Xcode. When you get there, single-click the
ShakeAndBreakController.m file, and add the following code at the top of the file:

#import "ShakeAndBreakViewController.h"

@implementation ShakeAndBreakViewController
@synthesize imageView;
@synthesize fixed;
@synthesize broken;
- (void) viewDidLoad {
 UIAccelerometer *accel = [UIAccelerometer sharedAccelerometer];
 accel.delegate = self;
 accel.updateInterval = kUpdateInterval;

24594ch15.indd 485 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer!486

 NSString *path = [[NSBundle mainBundle] pathForResource:@"glass"
 ofType:@"wav"];
 AudioServicesCreateSystemSoundID((CFURLRef)[NSURL
 fileURLWithPath:path], &soundID);

 self.fixed = [UIImage imageNamed:@"home.png"];
 self.broken = [UIImage imageNamed:@"homebroken.png"];

 imageView.image = fixed;
}
...

Insert the following lines of code into the existing dealloc and viewDidUnload methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.imageView = nil;
 self.fixed = nil;
 self.broken = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [imageView release];
 [fixed release];
 [broken release];
 [super dealloc];
}
...

And add the following new methods at the bottom of the file:

...
#pragma mark -
- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 if (!brokenScreenShowing) {
 if (acceleration.x > kAccelerationThreshold
 || acceleration.y > kAccelerationThreshold
 || acceleration.z > kAccelerationThreshold) {
 imageView.image = broken;
 AudioServicesPlaySystemSound(soundID);
 brokenScreenShowing = YES;
 }
 }
}

24594ch15.indd 486 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer! 487

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 imageView.image = fixed;
 brokenScreenShowing = NO;
}

@end

The first method we implement is viewDidLoad, where we get a reference to the shared
accelerometer instance, set self to be the accelerometer’s delegate, and then set the
update frequency using the constant we defined earlier:

 UIAccelerometer *accel = [UIAccelerometer sharedAccelerometer];
 accel.delegate = self;
 accel.updateInterval = kUpdateInterval;

Load the Simulation Files
Next, we load the glass sound file into memory and save the assigned identifier in the
 soundID instance variable:

NSString *path = [[NSBundle mainBundle] pathForResource:@"glass"
 ofType:@"wav"];
 AudioServicesCreateSystemSoundID((CFURLRef)[NSURL
 fileURLWithPath:path], &soundID);

We then load the two images into memory:

 self.fixed = [UIImage imageNamed:@"home.png"];
 self.broken = [UIImage imageNamed:@"homebroken.png"];

Finally, we set imageView to show the unbroken screenshot and set brokenScreenShowing
to NO to indicate that the screen does not currently need to be reset:

 imageView.image = fixed;
 brokenScreenShowing = NO;

The next new method is the accelerometer delegate method. In it, we check
 brokenScreenShowing. If it is NO, we know the screen is already showing the broken
image, so we don’t want to do anything.

 if (! brokenScreenShowing) {

Otherwise, we check all three of the axes passed in and see if any of them exceed the accel-
eration threshold we defined earlier. If any of the three axes do, we set the image view to
show the broken image, play the sound, and set brokenScreenShowing to YES so that we
don’t do this again until the user has reset the screen:

24594ch15.indd 487 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer!488

 if (acceleration.x > kAccelerationThreshold || acceleration.y >
 kAccelerationThreshold || acceleration.z >
 kAccelerationThreshold) {
 imageView.image = broken;
 AudioServicesPlaySystemSound (soundID);
 brokenScreenShowing = YES;
 }
 }

All Better—The Healing Touch
The last method is one you should be quite familiar with by now. It’s called when the screen
is touched. All we do in that method is to set the image back to the unbroken screen and set
brokenScreenShowing back to NO:

 imageView.image = fixed;
 brokenScreenShowing = NO;

Finally, add the AudioToolbox.framework so that we can play the sound file. You can link
AudioToolbox.framework into your application by following the instructions from Chapter 7
that start on page 190.

Compile and run the application, and take it for a test drive. For those of you who don’t have
the ability to run this application on your iPhone or iPod touch, you might want to give
the 3.0 version a try. The simulator does not simulate the accelerometer hardware, but it
does simulate the 3.0 shake gesture, so the version of the application in 15 ShakeAndBreak -
Motion Method will work with the simulator.

Go have some fun with it. When you’re done, come on back, and you’ll see how to use the
accelerometer as a controller for games and other programs.

The Rolling Marble Program
For our next trick, we’re going to let you move a sprite around iPhone’s screen by tilting the
phone. This is going to be a very simple example of using the accelerometer to receive input.
We’re going to use Quartz 2D to handle our animation. As a general rule, when you’re work-
ing with games and other programs that need smooth animation, you’ll probably want to
use OpenGL ES. We’re using Quartz 2D in this application for the sake of simplicity and to
reduce the amount of code that’s unrelated to using the accelerometer. The animation won’t
be quite as smooth as if we were using OpenGL, but it will be a lot less work.

24594ch15.indd 488 6/24/09 11:38:00 AM

CHAPTER 15: Whee! Accelerometer! 489

In this application, as you tilt your iPhone, the marble
will roll around as if it were on the surface of a table (see
 Figure 15-6). Tip it to the left, and the ball will roll to the left.
Tip it further, and it will move faster. Tip it back, and it will
slow down and then start going the other direction.

In Xcode, create a new project using the view-based appli-
cation template, and call this one Ball. Expand the Classes
and Resource folders, so you can see the files we will be
working with. In the 15 Ball folder in the project archive,
you’ll find an image called ball.png. Drag that to the
Resources folder of your project.

Now, single-click the Classes folder, and select New File…
from the File menu. Select Objective-C class from the Cocoa
Touch Class category, and then select UIView in the Subclass
of pop-up. Name the new file BallView.m, making sure to
have it create the header class for you as well.

Double-click BallViewController.xib to open the file in Inter-
face Builder. Single-click the View icon, and use the identity
inspector to change the view’s class from UIView to BallView.
Next, switch to the attribute inspector, and change the
view’s background color to black. After that, control-drag from the File’s Owner icon to the
Ball View icon, and select the view outlet to reestablish the link between the controller and
the view. Save the nib, close it, and go back to Xcode.

Implementing the Ball View Controller
Single-click BallViewController.h. All we need to do here is conform the class to the
 UIAccelerometerDelegate protocol, so make the following change:

#import <UIKit/UIKit.h>

#define kUpdateInterval (1.0f/60.0f)

@interface BallViewController :
 UIViewController <UIAccelerometerDelegate> {

}

@end

Figure 15-6. The Rolling Marble
application lets you do just
that—roll a marble around the
screen.

24594ch15.indd 489 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer!490

Next, switch to BallViewController.m, and make the following changes at the top of the file
these changes:

#import "BallViewController.h"
#import "BallView.h"

@implementation BallViewController

- (void)viewDidLoad {
 UIAccelerometer *accelerometer = [UIAccelerometer sharedAccelerometer];
 accelerometer.delegate = self;
 accelerometer.updateInterval = kUpdateInterval;
 [super viewDidLoad];
}
...

And add the following new method at the bottom of the file:

…
#pragma mark -
- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {

 [(BallView *)self.view setAcceleration:acceleration];
 [(BallView *)self.view draw];
}
@end

The viewDidLoad method here is nearly identical to the previous one. The main difference
is that we are declaring a much higher update interval of 60 times per second. Down in the
accelerometer:didAccelerate: method, we pass the acceleration object into our view
and then call a method named draw, which updates the position of the ball in the view
based on acceleration and the amount of time that has passed since the last update.

Writing the Ball View
Since we’re doing the bulk of our work in the BallView class, we’d better write it, huh? Sin-
gle-click BallView.h, and make the following changes:

#define kVelocityMultiplier 500
#import <UIKit/UIKit.h>

@interface BallView : UIView {
 UIImage *image;

 CGPoint currentPoint;
 CGPoint previousPoint;

24594ch15.indd 490 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer! 491

 UIAcceleration *acceleration;
 CGFloat ballXVelocity;
 CGFloat ballYVelocity;
}
@property (nonatomic, retain) UIImage *image;
@property CGPoint currentPoint;
@property CGPoint previousPoint;
@property (nonatomic, retain) UIAcceleration *acceleration;
@property CGFloat ballXVelocity;
@property CGFloat ballYVelocity;
- (void)draw;
@end

Let’s look at the instance variables and talk about what we’re doing with each of them. The
first instance variable is a UIImage that will point to the sprite that we’ll be moving around
the screen:

 UIImage *image;

After that, we keep track of two CGPoint variables. The currentPoint variable will hold the
current position of the ball. We’ll also keep track of the last point where we drew the sprite
so that we can build an update rectangle that encompasses both the new and old positions
of the ball so that it gets drawn at the new spot and erased at the old one:

 CGPoint currentPoint;
 CGPoint previousPoint;

Next is a pointer to an acceleration object, which is how we will get the accelerometer infor-
mation from our controller:

 UIAcceleration *acceleration;

We also have two variables to keep track of the ball’s current velocity in two dimensions.
Although this isn’t going to be a very complex simulation, we do want the ball to move
in a manner similar to a real ball, so we’ll calculate velocity using the formula velocity =
velocity + acceleration. We’ll get acceleration from the accelerometer and keep track
of velocity on two axes with these variables.

 CGFloat ballXVelocity;
 CGFloat ballYVelocity;

Let’s switch over to BallView.m and write the code to draw and move the ball around the
screen. First, make the following changes at the top of BallView.m:

24594ch15.indd 491 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer!492

#import "BallView.h"

@implementation BallView
@synthesize image;
@synthesize currentPoint;
@synthesize previousPoint;
@synthesize acceleration;
@synthesize ballXVelocity;
@synthesize ballYVelocity;

- (id)initWithCoder:(NSCoder *)coder {

 if (self = [super initWithCoder:coder]) {
 self.image = [UIImage imageNamed:@"ball.png"];
 self.currentPoint = CGPointMake((self.bounds.size.width / 2.0f) +
 (image.size.width / 2.0f),
 (self.bounds.size.height / 2.0f) + (image.size.height / 2.0f));

 ballXVelocity = 0.0f;
 ballYVelocity = 0.0f;
 }
 return self;
}
...

Now, insert the following lines of code into the existing drawRect: and dealloc methods:

...
- (void)drawRect:(CGRect)rect {
 // Drawing code
 [image drawAtPoint:currentPoint];
}
- (void)dealloc {
 [image release];
 [acceleration release];
 [super dealloc];
}
...

And we have a few new methods to add at the end of the class:

...
#pragma mark -
- (CGPoint)currentPoint {
 return currentPoint;
}
- (void)setCurrentPoint:(CGPoint)newPoint {

24594ch15.indd 492 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer! 493

 previousPoint = currentPoint;
 currentPoint = newPoint;

 if (currentPoint.x < 0) {
 currentPoint.x = 0;
 ballXVelocity = 0;
 }
 if (currentPoint.y < 0){
 currentPoint.y = 0;
 ballYVelocity = 0;
 }
 if (currentPoint.x > self.bounds.size.width - image.size.width) {
 currentPoint.x = self.bounds.size.width - image.size.width;
 ballXVelocity = 0;
 }
 if (currentPoint.y > self.bounds.size.height - image.size.height) {
 currentPoint.y = self.bounds.size.height - image.size.height;
 ballYVelocity = 0;
 }

 CGRect currentImageRect = CGRectMake(currentPoint.x, currentPoint.y,
 currentPoint.x + image.size.width,
 currentPoint.y + image.size.height);
 CGRect previousImageRect = CGRectMake(previousPoint.x, previousPoint.y,
 previousPoint.x + image.size.width,
 currentPoint.y + image.size.width);
 [self setNeedsDisplayInRect:CGRectUnion(currentImageRect,
 previousImageRect)];
}

- (void)draw {
 static NSDate *lastDrawTime;

 if (lastDrawTime != nil) {
 NSTimeInterval secondsSinceLastDraw =
 -([lastDrawTime timeIntervalSinceNow]);

 ballYVelocity = ballYVelocity + -(acceleration.y *
 secondsSinceLastDraw);
 ballXVelocity = ballXVelocity + acceleration.x *
 secondsSinceLastDraw;

 CGFloat xAcceleration = secondsSinceLastDraw * ballXVelocity * 500;
 CGFloat yAcceleration = secondsSinceLastDraw * ballYVelocity * 500;

 self.currentPoint = CGPointMake(self.currentPoint.x +
 xAcceleration, self.currentPoint.y + yAcceleration);

24594ch15.indd 493 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer!494

 }
 // Update last time with current time
 [lastDrawTime release];
 lastDrawTime = [[NSDate alloc] init];
}
@end

The first thing to notice is that one of our properties is declared as @synthesize, yet we
have implemented the mutator method for that property in our code. That’s OK. The
@synthesize directive will not overwrite accessor or mutator methods that you write; it
will just fill in the blanks and provide any ones that you do not.

Calculating Ball Movement
We are handling the currentPoint property manually, since, when the currentPoint
changes, we need to do a bit of housekeeping, such as making sure that the ball hasn’t
rolled off of the screen. We’ll look at that method in a moment. For now, let’s look at the first
method in the class, initWithCoder:. Recall that when you load a view from a nib, that
class’s init or initWithFrame: methods will never get called. Nib files contain archived
objects, so any instances loaded from nib will get initialized using the initWithCoder:
method. If we need to do any additional initialization, we need to do it in that method.

In this view, we do have some additional initialization, so we’ve overridden
initWithCoder:. First, we load the ball.png image. Second, we calculate the middle of the
view and set that as our ball’s starting point, and we set the velocity on both axes to 0.

self.image = [UIImage imageNamed:@"ball.png"];
 self.currentPoint = CGPointMake((self.bounds.size.width / 2.0f) +
 (image.size.width / 2.0f), (self.bounds.size.height / 2.0f) +
 (image.size.height / 2.0f));

 ballXVelocity = 0.0f;
 ballYVelocity = 0.0f;

Our drawRect: method couldn’t be much simpler. We simply draw the image we loaded in
initWithCoder: at the position stored in currentPoint. The currentPoint accessor is a
standard accessor method. The setCurrentPoint: mutator is another story, however.

The first things we do in setCurrentPoint: is to store the old currentPoint value in
 previousPoint and assign the new value to currentPoint:

 previousPoint = currentPoint;
 currentPoint = newPoint;

24594ch15.indd 494 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer! 495

The next thing we do is a boundary check. If either the x or y position of the ball is less than
0 or greater than the width or height of the screen (accounting for the width and height of
the image), then the acceleration in that direction is stopped.

 if (currentPoint.x < 0) {
 currentPoint.x = 0;
 ballXVelocity = 0;
 }
 if (currentPoint.y < 0){
 currentPoint.y = 0;
 ballYVelocity = 0;
 }
 if (currentPoint.x > self.bounds.size.width - image.size.width) {
 currentPoint.x = self.bounds.size.width - image.size.width;
 ballXVelocity = 0;
 }
 if (currentPoint.y > self.bounds.size.height - image.size.height) {
 currentPoint.y = self.bounds.size.height - image.size.height;
 ballYVelocity = 0;
 }

BOUNCY BOUNCY
Want to make the ball bounce off the walls more naturally, instead of just stopping? It’s easy enough to do.
Just change the two lines setCurrentPoint: that currently read

 ballXVelocity = 0;

to

 ballXVelocity = - (ballXVelocity / 2.0);

And change the two lines that currently read

 ballYVelocity = 0;

to

 ballYVelocity = - (ballYVelocity / 2.0);

With this change, instead of killing the ball’s velocity, we reduce it in half and set it to the inverse so that the
ball now has half the velocity in the opposite direction.

After that, we calculate two CGRects based on the size of the image. One rectangle encom-
passes the area where the new image will be drawn, and the other encompasses the area
where it was last drawn. We’ll use these two rectangles to ensure that the old ball gets
erased at the same time the new one gets drawn.

24594ch15.indd 495 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer!496

 CGRect currentImageRect = CGRectMake(currentPoint.x, currentPoint.y,
 currentPoint.x + image.size.width,
 currentPoint.y + image.size.height);
 CGRect previousImageRect = CGRectMake(previousPoint.x, previousPoint.y,
 previousPoint.x + image.size.width,
 currentPoint.y + image.size.width);

Finally, we create a new rectangle that is the union of the two rectangles we just calculated
and feed that to setNeedsDisplayInRect: to indicate the part of our view that needs to be
redrawn:

[self setNeedsDisplayInRect:CGRectUnion(currentImageRect,
 previousImageRect)];

The last substantive method in our class is draw, which is used to figure the correct new loca-
tion of the ball. This method is called in the accelerometer method of its controller class after
it feeds the view the new acceleration object. The first thing this method does is declare a
static NSDate variable that will be used to keep track of how long it has been since the last
time the draw method was called.

The first time through this method, when lastDrawTime is nil, we don’t do anything
because there’s no point of reference. Because the updates are happening about 60 times
a second, nobody will ever notice a single missing frame:

 static NSDate *lastDrawTime;

 if (lastDrawTime != nil) {

Every other time through this method, we calculate how long it has been since the last time
this method was called. We negate the value returned by timeIntervalSinceNow because
lastDrawTime is in the past, so the value returned will be a negative number representing
the number of seconds between the current time and lastDrawTime:

NSTimeInterval secondsSinceLastDraw =
 -([lastDrawTime timeIntervalSinceNow]);

Next, we calculate the new velocity in both directions by adding the current acceleration to
the current velocity. We multiply acceleration by secondsSinceLastDraw so that our accel-
eration is consistent across time. Tipping the phone at the same angle will always cause the
same amount of acceleration.

 ballYVelocity = ballYVelocity + -(acceleration.y *
 secondsSinceLastDraw);
 ballXVelocity = ballXVelocity + acceleration.x *
 secondsSinceLastDraw;

24594ch15.indd 496 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer! 497

After that, we figure out the actual change in pixels since the last time the method was
called based on the velocity. The product of velocity and elapsed time is multiplied by 500 to
create movement that looks natural. If we didn’t multiple it by some value, the acceleration
would be extraordinarily slow, as if the ball were stuck in molasses.

 CGFloat xAcceleration = secondsSinceLastDraw * ballXVelocity *
 kVelocityMultiplier;
 CGFloat yAcceleration = secondsSinceLastDraw * ballYVelocity *
 kVelocityMultiplier;

Once we know the change in pixels, we create a new point by adding the current location to
the calculated acceleration and assign that to currentPoint. By using self.currentPoint,
we use that accessor method we wrote earlier rather than assigning the value directly to the
instance variable.

 self.currentPoint = CGPointMake(self.currentPoint.x +
 xAcceleration, self.currentPoint.y +yAcceleration);

That ends our calculations, so all that’s left is to update lastDrawTime with the current time:

 [lastDrawTime release];
 lastDrawTime = [[NSDate alloc] init];

Go ahead and build and run.

NOTE
Unfortunately, Ball just will not do much on the simulator. If you want to experience Ball in all its gravity-
obeying grooviness, you’ll have to join the for-pay iPhone developer program and install it on your own
device.

If all went well, the application will launch, and you should be able to control the movement
of the ball by tilting the phone. When the ball gets to an edge of the screen, it should stop.
Tip back the other way, and it should start rolling in the other direction. Whee!

Rolling On
Well, we’ve certainly had some fun in this chapter with physics and the amazing iPhone
acceler-o-meter. We wrote a great April Fools’ prank, and you got to see the basics of using
the accelerometer as a control device. The possibilities for applications using the accelerom-
eter are as nearly endless as the universe. So now that you’ve got the basics down, go create
something cool and surprise us!

24594ch15.indd 497 6/24/09 11:38:01 AM

CHAPTER 15: Whee! Accelerometer!498

When you feel up to it, we’re going to get into using another bit of iPhone hardware: the
built-in camera.

24594ch15.indd 498 6/24/09 11:38:01 AM

Chapter 16

499

b
iPhone Camera and
Photo Library

y now, it should come as no surprise to you that the iPhone has a built-in cam-
era (which the current iPod touch unfortunately lacks) and a nifty application
called Photos to help you manage all those awesome pictures you’ve taken.
What you may not know is that your programs can use the built-in camera to
take pictures and that your programs can also allow the user to select pictures
from among the photos already on the iPhone.

Because of the way iPhone applications are sandboxed, applications ordinarily
can’t get to photographs or other data that lives outside of their own sand-
boxes. Fortunately, both the camera and the image library are made available
to your application by way of an image picker. As the name implies, an image
picker is a mechanism that lets you select an image from a specified source.
Typically, an image picker will use a list of images as its source (see the picture
on the left of Figure 16-1). You can, however, specify that the picker use the
camera as its source (see the picture on the right of Figure 16-1).

24594ch16.indd 499 6/24/09 11:39:57 AM

CHAPTER 16: iPhone Camera and Photo Library500

Figure 16-1. An image picker in action using a list of images (left)
and the camera (right)

Using the Image Picker and
 UIImagePickerController
The image picker interface is implemented by way of a modal controller class called
 UIImagePickerController. You create an instance of this class, specify a delegate (as if
you didn’t see that coming), specify its image source, and then launch it modally. The image
picker will then take control of the iPhone to let the user either select a picture from an exist-
ing set of images or take a new picture with the camera. Once the user takes or selects the
image, you can allow an opportunity to do some basic editing, such as scaling or cropping,
on the selected image. Assuming the user doesn’t press cancel, the image the user takes or
selects from the library will be delivered to your delegate.

Regardless of whether an image is selected or canceled, your delegate has the responsibility
to dismiss the UIImagePickerController so that the user can return to your application.

Creating a UIImagePickerController is extremely straightforward. You just allocate and
initialize an instance the way you would with most classes. There is one catch, however.
Not every device that runs the iPhone OS has a camera. The iPod touch is the first example
of this, but more such devices may roll off Apple’s assembly lines in the future. Before you

24594ch16.indd 500 6/24/09 11:39:57 AM

CHAPTER 16: iPhone Camera and Photo Library 501

create an instance of UIImagePickerController, you need to check to see whether the
device your program is currently running on supports the image source you want to use.
For example, before letting the user take a picture with the camera, you should make sure
the program is running on a device that has a camera. You can check that by using a class
method on UIImagePickerController, like this:

if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypePhotoLibrary]) {

In this example, we’re passing UIImagePickerControllerSourceTypePhotoLibrary to
indicate that we want to let the user pick one of the images out of the library of existing
photographs. The method isSourceTypeAvailable: will return YES if the specified
source is currently available. There are two other values you can specify, in addition to
UIImagePickerControllerSourceTypePhotoLibrary:

UIImagePickerControllerSourceTypeCamera specifies that the user will take a pic-
ture using the built-in camera. That image will be returned to your delegate.

UIImagePickerControllerSourceTypeSavedPhotosAlbum specifies that the user
will select the image from the library of existing photographs but that the selection
will be limited to the most recent camera roll. This option will run on an iPod touch
but does not do anything useful.

After making sure that the device your program is running on supports the image source
you want to use, launching the image picker is relatively easy:

UIImagePickerController *picker = [[UIImagePickerController alloc] init];
picker.delegate = self;
picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
[self presentModalViewController:picker animated:YES];
[picker release];

After we’ve created and configured the UIImagePickerController, we use a method that
our class inherited from UIView called presentModalViewController:animated: to pres-
ent the image picker to the user.

TIP
The presentModalViewController:animated: method is not limited to just presenting image
pickers; you can present any view controller to the user, modally, by calling this method on the view con-
troller for a currently visible view.

24594ch16.indd 501 6/24/09 11:39:57 AM

CHAPTER 16: iPhone Camera and Photo Library502

Implementing the Image Picker Controller
Delegate
The object that you want to be notified when the user has finished using the image picker
interface needs to conform to the UIImagePickerControllerDelegate protocol, which
defines two methods, imagePickerController:didFinishPickingImage:editingInfo:
and imagePickerControllerDidCancel:.

The first of these methods, imagePickerController:didFinishPickingImage:editin
gInfo:, gets called when the user has successfully taken a photo or selected one from the
photo library. The first argument is a pointer to the UIImagePickerController that you
created earlier. The second argument is a UIImage instance containing the actual photo the
user selected. The last argument is an NSDictionary instance that will be passed in if you
enabled editing and the user cropped or scaled the image. That dictionary will contain the
original, unedited image stored under the key UIImagePickerControllerOriginalImage.
Here’s an example delegate method that retrieves the original image:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image
 editingInfo:(NSDictionary *)editingInfo {

 UIImage *selectedImage = image;
 UIImage *originalImage = [editingInfo objectForKey:
 UIImagePickerControllerOriginalImage];

 // do something with selectedImage and originalImage

 [picker dismissModalViewControllerAnimated:YES];
}

The editingInfo dictionary will also tell you which portion of the entire image
was chosen during editing by way of an NSValue object stored under the key
UIImagePickerControllerCropRect. You can convert this string into a CGRect
like so:

 NSValue *cropRect = [editingInfo
 objectForKey:UIImagePickerControllerCropRect];
 CGRect theRect = [cropRect CGRectValue];

After this conversion, theRect will specify the portion of the original image that was
selected during the editing process. If you do not need this information, you can just
ignore it.

24594ch16.indd 502 6/24/09 11:39:57 AM

CHAPTER 16: iPhone Camera and Photo Library 503

CAUTION
If the image returned to your delegate comes from the camera, that image will not get stored in the photo
library. It is your application’s responsibility to save the image if necessary.

The other delegate method, imagePickerControllerDidCancel:, gets called if the user
decides to cancel the process without taking or selecting a picture. When the image picker
calls this delegate method, it’s just notifying you that the user is finished with the picker and
did not choose an image.

Both of the methods in the UIImagePickerControllerDelegate protocol are marked as
optional, but they really aren’t, and here is why: modal views like the image picker have to
be told to dismiss themselves. As a result, even if you don’t need to take any application-
specific actions when the user cancels an image picker, you still need to dismiss the picker.
At a bare minimum, your imagePickerControllerDidCancel: method will need to look
like this in order for your program to function correctly:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {

 [picker dismissModalViewControllerAnimated:YES];
}

Road Testing the Camera
and Library
In this chapter, we’re going to build an application that lets
the user take a picture with the camera or select one from
their photo library and then display the selected picture in
an image view (see Figure 16-2). If the user is on a device
without a camera, we will hide the Take Picture button and
the Pick from Library button and only allow selection from
the photo library.

Create a new project in Xcode using the view-based applica-
tion template, naming the application Camera. We’ll need a
couple of outlets in this application. We need one to point
to the image view so that we can update it with the image
returned from the image picker, and we’ll also need outlets
to point to the Take New Picture button and the Select from
Camera Roll button, so we can hide both of these buttons if
the device doesn’t have a camera. We also need two action

Figure 16-2. The Camera appli-
cation in action

24594ch16.indd 503 6/24/09 11:39:57 AM

CHAPTER 16: iPhone Camera and Photo Library504

methods, one that will be used for both the Take New Picture and Select from Camera Roll but-
tons and a separate one for letting the user select an existing picture from the photo library.
Expand the Classes and Resources folders so that you can get to all the relevant files.

Single-click CameraViewController.h, and make the following changes:

#import <UIKit/UIKit.h>

@interface CameraViewController : UIViewController
 <UIImagePickerControllerDelegate, UINavigationControllerDelegate> {
 UIImageView *imageView;
 UIButton *takePictureButton;
 UIButton *selectFromCameraRollButton;
}
@property (nonatomic, retain) IBOutlet UIImageView *imageView;
@property (nonatomic, retain) IBOutlet UIButton *takePictureButton;
@property (nonatomic, retain) IBOutlet UIButton
 *selectFromCameraRollButton;
- (IBAction)getCameraPicture:(id)sender;
- (IBAction)selectExistingPicture;
@end

The first thing you might notice is that we’ve actually conformed our class to two different
protocols: UIImagePickerControllerDelegate and UINavigationControllerDelegate.
Because UIImagePickerController is a subclass of UINavigationController, we
have to conform our class to both of these protocols. The methods in UINavigation
ControllerDelegate are both optional, and we don’t need either of them to use the image
picker, but we need to conform to the protocol or the compiler will give us a warning. Every-
thing else here is pretty straightforward, so save it. Now, double-click CameraViewController.
xib to open the file in Interface Builder.

Designing the Interface
Drag three Round Rect Buttons from the library over to the window labeled View. Place
them one above the next. Double-click the top one, and give it a title of Take New Picture.
Double-click the middle one, and give it a title of Pick from Camera Roll. Then double-click
the bottom button, and give it a title of Pick from Library. Next, drag an Image View from the
library, and place it above the buttons. Expand it to take the entire space of the view above
the buttons, as shown in Figure 16-2.

Now, control-drag from the File’s Owner icon to the image view, and select the imageView
outlet. Drag again from File’s Owner to the Take New Picture button, and select the take-
PictureButton outlet. Finally, drag from File’s Owner to the Pick from Camera Roll button, and
select the selectFromCameraRollButton outlet.

24594ch16.indd 504 6/24/09 11:39:57 AM

CHAPTER 16: iPhone Camera and Photo Library 505

Next, select the Take New Picture button, and press ⌘2 to bring up the connections inspec-
tor. Drag from the Touch Up Inside event to File’s Owner, and select the getCameraPicture:
action. Next, single-click the Pick from Camera Roll button, drag from the Touch Up Inside
event on the connections inspector to File’s Owner, and select the getCameraPicture: action.
Then, select the Pick from Library button. Drag from the Touch Up Inside event on the connec-
tions inspector to File’s Owner, and select the selectExistingPicture action. Once you’ve made
those connections, save and close the nib, and go back to Xcode.

Implementing the Camera View Controller
Single-click CameraViewController.m, and make the following changes at the beginning of
the file:

#import "CameraViewController.h"

@implementation CameraViewController
@synthesize imageView;
@synthesize takePictureButton;
@synthesize selectFromCameraRollButton;
- (void)viewDidLoad {
 if (![UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) {
 takePictureButton.hidden = YES;
 selectFromCameraRollButton.hidden = YES;
 }
}
...

Next, insert the following lines of code into the existing viewDidUnload and dealloc methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.imageView = nil;
 self.takePictureButton = nil;
 self.selectFromCameraRollButton = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [imageView release];
 [takePictureButton release];
 [selectFromCameraRollButton release];
 [super dealloc];
}
...

24594ch16.indd 505 6/24/09 11:39:58 AM

CHAPTER 16: iPhone Camera and Photo Library506

Now insert the following methods at the end of the file:

...
#pragma mark -
- (IBAction)getCameraPicture:(id)sender {
 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.delegate = self;
 picker.allowsImageEditing = YES;
 picker.sourceType = (sender == takePictureButton) ?
 UIImagePickerControllerSourceTypeCamera :
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;
 [self presentModalViewController:picker animated:YES];
 [picker release];

}

- (IBAction)selectExistingPicture {
 if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypePhotoLibrary]) {
 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.delegate = self;
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 [self presentModalViewController:picker animated:YES];
 [picker release];
 }
 else {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error accessing photo library"
 message:@"Device does not support a photo library"
 delegate:nil
 cancelButtonTitle:@"Drat!"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
}

#pragma mark -
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image
 editingInfo:(NSDictionary *)editingInfo {
 imageView.image = image;
 [picker dismissModalViewControllerAnimated:YES];

}

24594ch16.indd 506 6/24/09 11:39:58 AM

CHAPTER 16: iPhone Camera and Photo Library 507

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 [picker dismissModalViewControllerAnimated:YES];
}

@end

The first method we wrote was viewDidLoad:, and all we do there is check to see whether
we’re running on a device that has a camera:

 if (![UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]){

If we’re running a device without a camera, we hide the two camera-dependent buttons:

 takePictureButton.hidden = YES;
 selectFromCameraRollButton.hidden = YES;
 }

In our first action method, getCameraPicture:, we allocate and initialize a
 UIImagePickerController instance:

 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];

We then assign self as the image picker’s delegate and specify that the user is allowed to
edit the image after taking it:

 picker.delegate = self;
 picker.allowsImageEditing = YES;

Next, we set the sourceType based on which button was pressed. If the user tapped the
Take New Picture button, we tell the picker to allow use of the camera. If the user tapped the
Pick from Camera Roll button, we use UIImagePickerControllerSourceTypeSavedPhoto-
sAlbum, which, on a device with a camera, lets the user choose from the current camera roll.

 picker.sourceType = (sender == takePictureButton) ?
 UIImagePickerControllerSourceTypeCamera :
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;

Finally, we present the image picker modally and release the instance:

 [self presentModalViewController:picker animated:YES];
 [picker release];

We didn’t bother to check again to see whether this device supports the camera, because
we know that the buttons that trigger this action method will not be visible if it doesn’t. This
method should never get called on a device that doesn’t have a camera.

24594ch16.indd 507 6/24/09 11:39:58 AM

CHAPTER 16: iPhone Camera and Photo Library508

Our second action method is similar to the first one. This is where we allow the user to select
an image from a photo library. If the photo library exists, we create an image picker with a
sourceType of UIImagePickerControllerSourceTypePhotoLibrary.

 if ([UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypePhotoLibrary]) {
 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.delegate = self;
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 [self presentModalViewController:picker animated:YES];
 [picker release];
 }

If the device doesn’t have a photo library, we show an error alert. Note that having an empty
photo library is not the same as having no photo library. All current iPhone OS devices sup-
port a photo library, so this code should never fire, but it’s a good idea to code defensively
like this, since showing an alert is much kinder than crashing unexpectedly.

 else {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error accessing photo library"
 message:@"Device does not support a photo library"
 delegate:nil
 cancelButtonTitle:@"Drat!"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

Next up are our two delegate methods. Let’s look first at imagePickerController:
didFinishPickingImage:editingInfo, which gets called when the user is done using the
image picker. This same method will get called when the user has selected a picture, regard-
less of which source type was used. All we do in this method is set our imageView to display
the returned image:

 imageView.image = image;

After that, we tell the picker to dismiss itself so that the user is returned to our application
view:

 [picker dismissModalViewControllerAnimated:YES];

24594ch16.indd 508 6/24/09 11:39:58 AM

CHAPTER 16: iPhone Camera and Photo Library 509

This last step of dismissing the modal view controller is
repeated in imagePickerControllerDidCancel:. We don’t
need to do anything else if the user cancels, but we do need
the image picker to go away, or the image picker will just sit
there getting in the way of our application’s view.

That’s all we need to do. We don’t even need to link in any
additional libraries this time. Compile and run. If you’re run-
ning on the simulator, you won’t have the option to take
a new picture. If you have the opportunity to run on a real
device, go ahead and try it. You should be able to take a new
picture and zoom in and out of the picture using the pinch
gestures (see Figure 16-3).

If you zoom in before hitting the Use Photo button, the
image that gets returned to our application in the delegate
method will be the cropped image.

It’s a Snap!
Believe it or not, that’s all there is to letting your users take
pictures with the iPhone’s camera so that the pictures can
be used by your application. You can even let the user do a
small amount of editing on that image if you so choose.

In the next chapter, we’re going to look at reaching a larger audience for your iPhone appli-
cations by making them oh so easy to translate into other languages. Êtes-vous prêt? Tournez
la page et allez directement. Allez, allez!

Figure 16-3. If you set
allowsEditing to YES, the user
will be able to zoom and crop
images before returning to our
application.

24594ch16.indd 509 6/24/09 11:39:58 AM

24594ch16.indd 510 6/24/09 11:39:58 AM

Chapter 17

511

a
Application
Localization

t the time of this writing, the iPhone is available in 84 different countries and
that number will continue to increase over time. You can now buy and use an
iPhone on every continent except Antarctica. If you plan on releasing applica-
tions through the iPhone App Store, your potential market is considerably
larger than just people in your own country who speak your own language.
Fortunately, iPhone has a robust localization architecture that lets you easily
translate your application (or have it translated by others) into not only mul-
tiple languages but even into multiple dialects of the same language. Want to
provide different terminology to English speakers in the United Kingdom than
you do to English speakers in the United States? No problem.

That is, no problem at all if you’ve written your code correctly. Retrofitting an
existing application to support localization is much harder than writing your
application that way from the start. In this chapter, we’ll show you how to
write your code so it is easy to localize, and then we’ll go about localizing a
sample application.

Localization Architecture
When a nonlocalized application is run, all of the application’s text will be
presented in the developer’s own language, also known as the development
base language.

When developers decide to localize their application, they create a subdirec-
tory in their application bundle for each supported language. Each language’s
subdirectory contains a subset of the application’s resources that were trans-
lated into that language. Each subdirectory is called a localization project,

24594ch17.indd 511 6/24/09 11:42:16 AM

CHAPTER 17: Application Localization512

also called a localization folder. Localization folder names always end with the extension
.lproj.

In the Settings application, the user has the ability to set the language and region format.
For example, if the user’s language is English, available regions might be United States,
 Australia, or Hong Kong—all regions in which English is spoken.

When a localized application needs to load a resource, such as an image, property list, or nib,
the application checks the user’s language and region and looks for a localization folder that
matches that setting. If it finds one, it will load the localized version of the resource instead
of the base version.

For users who selected French as their iPhones’ language and France as their region, the
application will look first for a localization folder named fr_FR.lproj. The first two letters of the
folder name are the ISO country code that represents the French language. The two letters
following the underscore are the ISO two-digit code that represents France.

If the application cannot find a match using the two-digit code, it will look for a match using
the language’s three-digit ISO code. All languages have three-digit codes. Only some have
two-digit codes.

NOTE
You can find a list of the current ISO country codes on the ISO web site. Both the two- and three-digit
codes are part of the ISO 3166 standard (http://www.iso.org/iso/country_codes.htm).

In our previous example, if the application was unable to find the folder named fr_FR.lproj,
it will look for a localization folder named fre_FR or fra_FR. All languages have at least one
three-digit code; some have two three-digit codes, one for the English spelling of the lan-
guage and one for the native spelling. When a language has both a two-digit code and a
three-digit code, the two-digit code is preferred.

If the application cannot find a folder that is an exact match, it will then look for a localiza-
tion folder in the application bundle that matches just the language code without the
region code. So, staying with our French-speaking person from France, the application
would next look for a localization project called fr.lproj. If it didn’t find a language project
with that name, it would try looking for fre.lproj, then fra.lproj. If none of those was found, it
would look for French.lproj. The last construct exists to support legacy Mac OS X applications,
and generally speaking, you should avoid it (though there is an exception to that rule that
we’ll look at later in this chapter).

If the application doesn’t find a language project that matches either the language/region
combination or just the language, it will use the resources from the development base
 language. If it does find an appropriate localization project, it will always look there first for

24594ch17.indd 512 6/24/09 11:42:16 AM

http://www.iso.org/iso/country_codes.htm

CHAPTER 17: Application Localization 513

any resources that it needs. If you load a UIImage using imageNamed:, for example, it will
look first for an image with the specified name in the localization project. If it finds one, it
will use it. If it doesn’t, it will fall back to the base language resource.

If an application has more than one localization project that matches, for example, a project
called fr_FR.lproj and one called fr.lproj, it will look first in the more specific match, in this
case fr_FR.lproj. If it doesn’t find the resource there, it will look in the fr.lproj. This gives you
the ability to provide resources common to all speakers of a language in one language proj-
ect, localizing only those resources that are impacted by differences in dialect or geographic
region.

You only have to localize resources that are affected by language or country. If an image in
your application has no words and its meaning is universal, there’s no need to localize that
image.

Using String Files
What do we do about string literals and string constants in your source code? Consider this
source code from the previous chapter:

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error accessing photo library"
 message:@"Device does not support a photo library"
 delegate:nil
 cancelButtonTitle:@"Drat!"
 otherButtonTitles:nil];
 [alert show];
 [alert release];

If we’ve gone through the effort of localizing our application for a particular audience, we
certainly don’t want to be presenting alerts written in the development base language.

The answer is to store these strings in special text files call string files. String files are noth-
ing more than Unicode (UTF-16) text files that contain a list of string pairs, each identified by
a comment.

Here is an example of what a strings file might look like in your application:

/* Used to ask the user his/her first name */
"First Name" = "First Name";

/* Used to get the user's last name */
"Last Name" = "Last Name";

/* Used to ask the user's birth date */
"Birthday" = "Birthday";

24594ch17.indd 513 6/24/09 11:42:16 AM

CHAPTER 17: Application Localization514

The values between the /* and the */ characters are just comments for the translator. They
are not used in the application and can safely be excluded, though they’re a good idea. They
give context, showing how a particular string is being used in the application.

You’ll notice that each line lists the same string twice. The string on the left side of the equals
sign acts as a key, and it will always contain the same value regardless of language. The value
on the right side of the equals sign is the one that gets translated to the local language. So,
the preceding strings file, localized into French, might look like this:

/* Used to ask the user his/her first name */
"First Name " = "Prénom";

/* Used to get the user's last name */
"Last Name " = "Nom de famille";

/* Used to ask the user's birth date */
"Birthday" = "Anniversaire";

Creating the Strings File
You won’t actually create the strings file by hand. Instead, you’ll embed all localizable text
strings in a special macro in your code. Once your source code is final and ready for localiza-
tion, you’ll run a command-line program, named genstrings, which will search all your
code files for occurrences of the macro, pulling out all the unique strings and embedding
them in a localizable strings file.

Here’s how the macro works. Let’s start with a traditional string declaration:

NSString *myString = @"First Name";

To make this string localizable, you’ll do this instead:

NSString *myString = NSLocalizedString(@"First Name",
 @"Used to ask the user his/her first name");

The NSLocalizedString macro takes two parameters. The first is the string value in the
base language. If there is no localization, the application will use this string. The second
parameter will be used as a comment in the strings file.

NSLocalizedString looks in the application bundle, inside the appropriate localization
project, for a strings file named localizable.strings. If it does not find the file, it returns its first
parameter, and the string will appear in the development base language. Strings are typi-
cally displayed only in the base language during development, since the application will not
yet be localized.

24594ch17.indd 514 6/24/09 11:42:16 AM

CHAPTER 17: Application Localization 515

If NSLocalizedString finds the strings file, it searches the file for a line that matches the
first parameter. In the preceding example, NSLocalizedString will search the strings file for
the string "First Name". If it doesn’t find a match in the localization project that matches
the user’s language settings, it will then look for a strings file in the base language and use
the value there. If there is no strings file, it will just use the first parameter you passed to the
NSLocalizedString macro.

Let’s take a look at this process in action.

Real-World iPhone: Localizing Your
 Application
We’re going to create a small application that displays the user’s current locale. A locale (an
instance of NSLocale) represents both the user’s language and region. It is used by the sys-
tem to determine what language to use when interacting with the user and to determine
how to display dates, currency, and time information, among other things. After we create
the application, we will then localize it into other languages. You’ll learn how to localize nib
files, string files, images, and even your application’s icon. You can see what our application
is going to look like in Figure 17-1. The name across the top comes from the user’s locale. The
words down the left side of the view are static labels that are set in the nib file. The words
down the right side are set programmatically using outlets. The flag image at the bottom of
the screen is a static UIImageView.

Figure 17-1. The LocalizeMe application shown with three different language/region settings

24594ch17.indd 515 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization516

Let’s hop right into it. Create a new project in Xcode using the view-based application tem-
plate, and call it LocalizeMe. If you look in the 17 LocalizeMe folder, you’ll see a subfolder
named Resources. Inside Resources, you’ll find a directory named Base Language. In that
folder, you’ll find two images, icon.png and flag.png. Drag both of those to the Resources
folder of your project. Now, single-click LocalizeMe-Info.plist, and set the Icon file value to
icon.png so that the icon image will be used as your application’s icon.

We need to create outlets to a total of six labels: one for the blue label across the top of the
view and five for the words down the right-hand side. Expand the Classes folder, single-click
LocalizeMeViewController.h, and make the following changes:

#import <UIKit/UIKit.h>

@interface LocalizeMeViewController : UIViewController {
 UILabel *localeLabel;
 UILabel *label1;
 UILabel *label2;
 UILabel *label3;
 UILabel *label4;
 UILabel *label5;
}
@property (nonatomic, retain) IBOutlet UILabel *localeLabel;
@property (nonatomic, retain) IBOutlet UILabel *label1;
@property (nonatomic, retain) IBOutlet UILabel *label2;
@property (nonatomic, retain) IBOutlet UILabel *label3;
@property (nonatomic, retain) IBOutlet UILabel *label4;
@property (nonatomic, retain) IBOutlet UILabel *label5;
@end

Now double-click the LocalizeMeViewController.xib file to open the file in Interface Builder.
Once it’s open, drag a Label from the library, and drop it at the top of the window. Resize it
so that it takes the entire width of the view from blue guide line to blue guide line. With the
label selected, make the text bold using ⌘B, and change the text alignment to centered and
the text color to a bright blue using the attributes inspector.

You can also make the font size larger if you wish. To do that, select Show Fonts from the
Font menu. Make the font as large as you like. As long as Adjust to fit is selected in the attri-
butes inspector, the text will be resized if it gets too long to fit.

With your label in place, control-drag from the File’s Owner icon to this new label, and select
the localeLabel outlet.

Next, drag five more Labels from the library, and put them against the left margin using the
blue guide line, one above the other, as shown in Figure 17-1. Double-click the top one, and
change it from Label to One. Repeat that step with the other four labels you just added so
that they contain the numbers from one to five spelled out.

24594ch17.indd 516 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization 517

Drag five more Labels from the library, this time placing them against the right margin.
Change the text alignment using the attributes inspector so that they are right aligned, and
increase the size of the label so that it stretches from the right blue guide line to about the
middle of the view. Control-drag from File’s Owner to each of the five new labels, connecting
each one to a different numbered label outlet. Now, double-click each one of the new labels,
and delete its text. We will be setting these values programmatically.

Finally, drag an Image View from the library over to the bottom part of the view. In the attri-
butes inspector, select flag.png for the view’s Image attribute, and resize the image to stretch
from blue guide line to blue guide line. Next, on the attributes inspector, change the Mode
attribute from Center to Aspect Fit. Not all flags have the same aspect ratio, and we want to
make sure the localized versions of the image look right. Selecting this option will cause the
image view to resize any other images put in this image view so they fit, but it will maintain
the correct aspect ratio (ratio of height to width). If you like, make the flag taller, until the
sides of the flag touch the blue guide lines.

Save and close the nib file, and head back to Xcode. Single-click LocalizeMeViewController.m,
and insert the following code at the top of the file:

#import "LocalizeMeViewController.h"

@implementation LocalizeMeViewController
@synthesize localeLabel;
@synthesize label1;
@synthesize label2;
@synthesize label3;
@synthesize label4;
@synthesize label5;

- (void)viewDidLoad {

 NSLocale *locale = [NSLocale currentLocale];
 NSString *displayNameString = [locale
 displayNameForKey:NSLocaleIdentifier
 value:[locale localeIdentifier]];
 localeLabel.text = displayNameString;

 label1.text = NSLocalizedString(@"One", @"The number 1");
 label2.text = NSLocalizedString(@"Two", @"The number 2");
 label3.text = NSLocalizedString(@"Three", @"The number 3");
 label4.text = NSLocalizedString(@"Four", @"The number 4");
 label5.text = NSLocalizedString(@"Five", @"The number 5");
 [super viewDidLoad];
}
...

24594ch17.indd 517 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization518

Also, add the following code to the existing viewDidUnload and dealloc methods:

...
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.localeLabel = nil;
 self.label1 = nil;
 self.label2 = nil;
 self.label3 = nil;
 self.label4 = nil;
 self.label5 = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [localeLabel release];
 [label1 release];
 [label2 release];
 [label3 release];
 [label4 release];
 [label5 release];
 [super dealloc];
}
@end

The only thing we need to look at in this class is the viewDidLoad method. The first thing
we do there is get an NSLocale instance that represents the users’ current locale, which
can tell us both their language and their region preferences, as set in their iPhone’s Settings
 application.

 NSLocale *locale = [NSLocale currentLocale];

Looking at the Current Locale
The next line of code might need a little bit of explanation. NSLocale works somewhat like a
dictionary. There is a whole bunch of information that it can give us about the current users’
preferences, including the name of the currency they use and the date format they expect.
You can find a complete list of the information that you can retrieve in the NSLocale API
reference.

In this next line of code, we’re retrieving the locale identifier, which is the name of
the language and/or region that this locale represents. We’re using a function called
displayNameForKey:value:. The purpose of this method is to return the value of the
item we’ve requested in a specific language.

24594ch17.indd 518 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization 519

The display name for the French language, for example, would be Français in French,
but French in English. This method gives us the ability to retrieve data about any locale
so that it can be displayed appropriately to any users. In this case, we’re getting the dis-
play name for the locale in the language of that locale, which is why we pass in [locale
 localeIdentifier] in the second argument. The localeIdentifier is a string in the
format we used earlier to create our language projects. For an American English speaker, it
would be en_US and for a French speaker from France, it would be fr_FR.

 NSString *displayNameString = [locale
 displayNameForKey:NSLocaleIdentifier
 value:[locale localeIdentifier]];

Once we have the display name, we use it to set the top label in the view:

 localeLabel.text = displayNameString;

Next, we set the five other labels to the numbers one through five spelled out in our devel-
opment base language. We also provide a comment telling what each word is. You can just
pass an empty string if the words are obvious, as they are here, but any string you pass in the
second argument will be turned into a comment in the strings file, so you can use this com-
ment to communicate with the person doing your translations.

 label1.text = NSLocalizedString(@"One", @"The number 1");
 label2.text = NSLocalizedString(@"Two", @"The number 2");
 label3.text = NSLocalizedString(@"Three", @"The number 3");
 label4.text = NSLocalizedString(@"Four", @"The number 4");
 label5.text = NSLocalizedString(@"Five", @"The number 5");

Trying Out LocalizeMe
Let’s run our application now. You can use either the simulator or a device to test this. The
simulator does seem to cache some language and region settings, so you may want to do
this on the device if you have that option. Once the application launches, it should look like
Figure 17-2.

By using the NSLocalizedString macros instead of static strings, we are all ready for local-
ization. But we are not localized yet. If you use the Settings application on the simulator or
on your iPhone to change to another language or region, the results would look essentially
the same, except for the label at the top of the view (see Figure 17-3).

24594ch17.indd 519 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization520

Figure 17-2. The language running
under the authors’ base language. Our
application is set up for localization
but is not yet localized.

Figure 17-3. The nonlocalized appli-
cation run on an iPhone set to use the
French language

Localizing the Nib
Now, let’s localize the nib file. The basic process for localizing any file is the same. In Xcode,
single-click LocalizeMeViewController.xib, and then press ⌘I to open the Info window for that
file. If the window is not currently showing the General tab, select the General tab. Click the
button that says Make File Localizable in the lower-left part of the window (see Figure 17-4).

24594ch17.indd 520 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization 521

Figure 17-4. The LocalizeMeViewController.xib Info window

When you click the Make File Localizable button, the window will switch to the Targets
tab. Close the Info window, and look at the Groups & Files pane in Xcode. Notice that the
 LocalizeMeViewController.xib file now has a disclosure triangle next to it, as if it were a
group or folder. Expand it, and take a look (see Figure 17-5).

Figure 17-5. Localizable files have a disclosure triangle
and a child value for each language or region you add.

24594ch17.indd 521 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization522

Looking at the Localized Project Structure
In our project, LocalizeMeViewController.xib has one child, English. This one was created
 automatically, and it represents your development base language. Go to the Finder, and
open your LocalizeMe project folder. You should see a new folder named English.lproj (see
Figure 17-6).

Figure 17-6. By making a file localizable, Xcode created a
language project folder for our base language.

At the time of this writing, Xcode is still using the legacy project name for the development
base language project, English.lproj, rather than following Apple’s localization convention of
using the ISO two-letter language code, which would have resulted in a folder called en.lproj
instead. This is listed in the Xcode 3.1 release notes as a known issue. You don’t need to
change this folder name, as it will work just fine, but use the ISO codes for any new localiza-
tions you add.

Single-click LocalizeMeViewController.xib in the Groups & Files pane again, and press ⌘I to
bring the Info window back up. Go back to the General tab if you’re not on it, and click the
Add Localization button. A sheet will drop down and ask you to enter the name of the new
localization. Let’s add localization for the French language, so type fr. Don’t select French
from the drop-down menu, as that will use the legacy name of French.

TIP
When dealing with locales, language codes are lowercase, but country codes are uppercase. So, the correct
name for the French language project is fr.lproj, but the project for Parisian French (French as spoken by
people in France) is fr_FR.lproj, not fr_fr.lproj or FR_fr.lproj. The iPhone’s file system is case sensitive, so it
is important to match case correctly.

After you press return, Xcode will create a new localization project in your project folder
called fr.lproj and copy LocalizeMeViewController.xib there. In the Groups & Files pane,

24594ch17.indd 522 6/24/09 11:42:17 AM

CHAPTER 17: Application Localization 523

 LocalizeMeViewController.xib should now have two children, English and fr. Double-click fr to
open the nib file that will be shown to French speakers.

CAUTION
Xcode will allow you to localize pretty much any file in the Groups & Files pane. Just because you can,
doesn’t mean you should. Do not ever localize a source code file. Doing so will cause compile errors, as
multiple object files with the same name will be created.

The nib file that opens in Interface Builder will look exactly like the one you built earlier,
because the nib file you just created is a copy of the earlier one. Any changes you make to
this one will be shown to people who speak French, so double-click each of the labels on the
left side and change them from One, Two, Three, Four, Five to Un, Deux, Trois, Quatre, Cinq.
Once you have changed them, save the nib, and go back to Xcode. Your nib is now localized
in to French. Compile and run the program. After it launches, tap the home button.

iPhone caches settings, so if we were to just go and run the application now, there’s a very
good chance we would see exactly what we saw before. In order to make sure we see the
correct thing, we need to go reset the simulator and do a clean build of our application.

 On the simulator, there’s a menu option under the iPhone
Simulator menu to Reset Content and Settings…. Select
that now. After you select it, you should be presented with
the home screen. From there, go to the Settings application,
and select the General row and then the row labeled Inter-
national. From here, you’ll be able to change your language
and region preferences (see Figure 17-7).

Change the Region Format from United States to France
(which is under the row for French), and then change Lan-
guage from English to Français. Now click the Done button.
And finally, quit the simulator, and go to Xcode. You want to
change the Region Format first, because once you change
the language, your iPhone will reset and go back to the
home screen. Now, your phone is set to use French.

Back in Xcode, and select Clean from the Build menu. Make
sure all the checkboxes on the presented sheet are checked,
and then click the Clean button. This will remove all traces of
the previous build. Once the clean operation is done, build
and run LocalizeMe again. This time, the words down the
left-hand side should show up in French (see Figure 17-8).

Figure 17-7. Changing the
language and region, the two
settings that affect the user’s
locale

24594ch17.indd 523 6/24/09 11:42:18 AM

CHAPTER 17: Application Localization524

The problem is that the flag and right column of text are still
wrong. We’ll take care of the flag first. Now, we could have
changed the flag image right in the nib by just selecting a
different image for the image view in the French localized
nib file. Instead of doing that, we’ll actually localize the flag
image itself. When an image or other resource used by a
nib is localized, the nib will automatically show the correct
version for the language, though not for the dialect, at the
time of this writing. If we localize the flag.png file itself with
a French version, the nib will automatically show the correct
flag when appropriate.

Localizing an Image
Let’s localize the flag image now. Single-click flag.png in
Xcode’s Groups & Files pane. Next, press ⌘I to bring up the
Info window for that file, and click the Make File Localizable
button. Once you do that, Xcode is going to copy flag.png
into the English.lproj folder (or from your base language
folder, if it’s different). Switch back to the General tab, and
click the Add Localization button. When prompted for a
language, type fr. There should now be another file in your
fr.lproj folder inside of your LocalizeMe project folder, called flag.png; it is a copy of the flag.
png file from the base language. Obviously, that’s not the correct image. Since Xcode doesn’t
let you edit image files, the easiest way get the right image into the localization project is to
just copy the correct image into the project using the Finder. In the Resources folder of the 17
LocalizeMe folder, you’ll find a folder called fr. In that subfolder, you’ll find a flag.png file that
contains the French flag rather than the American one. Copy the flag.png file from there to
your project’s fr.lproj subfolder, overwriting the file that’s there.

That’s it. You’re done. If you are running in the simulator, reset the simulator and do a clean
build, as you did earlier before rerunning the program. Once you rerun, you’ll need to reset
the region and language to get the French flag to appear.

If you’re running on the device, your iPhone has probably cached the American flag from the
last time you ran the application, let’s remove the old application from your iPhone using the
Organizer window in Xcode.

Select Organizer from the Window menu, or press ^⌘O to bring it up (see Figure 17-9).

Figure 17-8. The application
is partially translated into
French now.

24594ch17.indd 524 6/24/09 11:42:18 AM

CHAPTER 17: Application Localization 525

Figure 17-9. The Xcode Organizer window lets you manually remove applications.

On the Summary tab, you’ll see three sections. The bot-
tommost section is labeled Applications. In the list of
applications, look for LocalizeMe; select it, and click the
minus button to remove the old version of that application
and the caches associated with it.

Now, select Clean from the Build menu, and build and run
the application again. Once the application launches, you’ll
need to reset the region then the language and the French
flag should now come up in addition to the French words
down the left-hand side (see Figure 17-10).

Localizing the Application Icon
You can localize the application’s icon image in exactly the
same way that you localized flag.png. Single-click icon.png
in the Groups & Files pane’s Resources group. Bring up the
Info window, and switch to the General tab if you’re not
already there. Click the Make File Localizable button, and Figure 17-10. The image and

nib are both localized now.

24594ch17.indd 525 6/24/09 11:42:18 AM

CHAPTER 17: Application Localization526

switch back to the General tab. Click the Add Localization button, and when prompted for the
language, type fr.

In the fr folder in the Resources folder of 17 LocalizeMe,
where you just copied the flag.png file, you’ll also find a
localized version of icon.png. Copy that into your fr.lproj
folder using the Finder, overwriting the version that’s there.
Now, the iPhone will automatically detect and show this
icon to users who speak French, though you’ll probably
need to delete the application from your phone again, or
reset the simulator to get the change to show up.

Generating and Localizing a Strings File
If you look at Figure 17-10, you’ll see that the words on the
right-hand side of the view are still in English. In order to
translate those, we need to generate our base language
strings file and then localize that. In order to accomplish
this, we’ll need to leave the comfy confines of Xcode for a
few minutes.

Launch Terminal.app, which is in /Applications/Utilities/.
When the terminal window opens, type cd followed by a
space. Don’t press return.

Now, go to the Finder, and drag your LocalizeMe project folder to the terminal window. As
soon as you drop the folder onto the terminal window, the path to the project folder should
appear on the command line. Now, press return.

The cd command is Unix-speak for “change directory,” so what you’ve just done is steer your
terminal session from its default directory over to your project directory.

Our next step is to run the program genstrings and tell it to find all the occurrences of
NSLocalizedString in our .m files in the Classes folder. To do this, type the following com-
mand, and then press return:

genstrings ./Classes/*.m

When the command is done executing (it just takes a second on a project this small) you’ll
be returned to the command line. In the Finder, look in the project folder for a new file called
Localizable.strings. Drag that to the Resources folder in Xcode’s Groups & Files pane, but when
it prompts you, don’t click the Add button just yet.

Figure 17-11. We localized our
application icon!

24594ch17.indd 526 6/24/09 11:42:18 AM

CHAPTER 17: Application Localization 527

TIP
You can rerun genstrings at any time to re-create your base language file, but once you have had
your strings file localized into another language, it’s important that you don’t change the text used in any
of the NSLocalizedString() macros. That base-language version of the string is used as a key to
retrieve the translations, so if you change them, the translated version will no longer be found, and you
will either have to update the localized strings file or have it retranslated.

Localizable.strings files are encoded in UTF-16, which is a two-byte version of Unicode. Most
of us are probably using UTF-8 or a language-local encoding scheme as our default encod-
ing in Xcode. When we import the Localizable.strings file into our project, we need to take
that into account. First, uncheck the box that says Copy items into destination group’s folder (if
needed), because the file is already in our project folder. More importantly, change the text
encoding to Unicode (UTF-16) (see Figure 17-12). If you don’t do that, the file will look like
gibberish when you try to edit it in Xcode.

Figure 17-12. Importing the Localizable.strings file

24594ch17.indd 527 6/24/09 11:42:18 AM

CHAPTER 17: Application Localization528

Now, go ahead and click the Add button. Once the file is imported, single-click Localizable.
strings in Resources, and take a look at it. It should contain five entries, because we use
 NSLocalizableString five times with five distinct values. The values that we passed in as
the second argument have become the comments for each of the strings.

The strings were generated in alphabetical order, which is a nice feature. In this case, since
we’re dealing with numbers, alphabetical order is not the most intuitive way to present
them, but in most cases, having them in alphabetical order will be helpful.

/* The number 5 */
"Five" = "Five";

/* The number 4 */
"Four" = "Four";

/* The number 1 */
"One" = "One";

/* The number 3 */
"Three" = "Three";

/* The number 2 */
"Two" = "Two";

Let’s localize this sucker.

Single-click Localizable.strings, and press ⌘I to bring up the Info window. If you switch to
the General tab, you’ll find that same Make File Localizable button that we used to make the
images and the nib file localizable. Click it now.

Switch back to the General tab, and click Add Localization. When prompted for a language,
type fr to indicate that we are localizing for all dialects of the French language. Back in the
Groups & Files pane of Xcode, click the disclosure triangle next to Localizable.strings. Single-
click fr, and in the editor pane of Xcode, make the following changes:

/* The number 5 */
"Five" = "Cinq";

/* The number 4 */
"Four" = "Quatre";

/* The number 1 */
"One" = "Un";

/* The number 3 */
"Three" = "Trois";

24594ch17.indd 528 6/24/09 11:42:18 AM

CHAPTER 17: Application Localization 529

/* The number 2 */
"Two" = "Deux";

In real life (unless you’re multilingual), you would ordinarily send this file out to a translation
service to translate the values on the right of the equals signs. In this simple example, armed
with knowledge that came from years of watching Sesame Street, we can do the translation
ourselves.

Now save, compile, and run—our application is now fully localized for the French language.
We’ve provided you with the information in the Resources subfolder of 17 LocalizeMe to do
the German and Canadian French localizations if you want some more practice. You’ll find
two more copies of the icon.png, flag.png, and Localizable.strings file if you want to try add-
ing support for additional languages.

Auf Wiedersehen
If you want to maximize sales of your iPhone application, localize it as much as possible.
Fortunately, iPhone’s localization architecture makes easy work of supporting multiple lan-
guages, and even multiple dialects of the same language, within your application. As you
saw in this chapter, nearly any type of file that you add to your application can be localized,
as needed.

Even if you don’t plan on localizing your application, get in the habit of using
 NSLocalizedString instead of just using static strings in your code. With Xcode’s Code
Sense feature, the difference in typing time is negligible, and should you ever want to
 translate your application, your life will be much, much easier.

At this point, our journey is nearly done. We’re almost to the end of our travels together.
After the next chapter, we’ll be saying sayonara, au revoir, auf wiedersehen, aντίο, arrivederci,
and adiós. You now have a solid foundation you can use to build your own cool iPhone appli-
cations. Stick around for the going-away party though, as we’ve still got a few helpful bits of
information for you.

24594ch17.indd 529 6/24/09 11:42:18 AM

24594ch17.indd 530 6/24/09 11:42:18 AM

Chapter 18

531

w
Where to Next?

ell, wow! You’re still with us, huh? Great! It sure has been a long journey since
that very first iPhone application we built together. You’ve certainly come a
long way. We’d love to tell you that you now know it all, but when it comes to
technology, and especially when it comes to programming, you never know it
all. The programming language and frameworks we’ve been working with for
the last 17 chapters are the end result of more than 20 years of evolution. And
Apple engineers are feverishly working round the clock, thinking of that next
cool new thing. The iPhone platform has just begun to blossom. There is so
much more to come.

By making it through this book, you’ve built yourself a sturdy foundation.
You’ve got a solid knowledge of Objective-C, Cocoa Touch, and the tools that
bring these technologies together to create incredible new iPhone applica-
tions. You understand the iPhone software architecture, the design patterns
that make Cocoa Touch sing. In short, you are ready to chart your own course.
We are so proud! So where to next?

Getting Unstuck
At its core, programming is about problem solving, about figuring things out.
It’s fun, and it’s rewarding like few things are. But, at times, you will run up
against a puzzle that just seems insurmountable, a problem that just does not
seem to have a solution.

Sometimes, the answer just appears if you take a bit of time away from the
problem. A good night’s sleep or a few hours of doing something different can
often be all that is needed to get you through it. Believe us; you can stare at
the same problem for hours, overanalyzing and getting yourself so worked up
that you miss an obvious solution.

24594ch18.indd 531 6/24/09 11:45:41 AM

CHAPTER 18: Where to Next?532

And then there are times when even a change of scenery doesn’t help. And in those situa-
tions, it’s good to have friends in high places. The following sections outline some resources
you can turn to when you’re in a bind.

Apple’s Documentation
Become one with Xcode’s documentation browser, grasshopper. The documentation
browser is a front end to a wealth of incredibly valuable sample source code, concept
guides, API references, video tutorials, and a whole lot more. There are few areas of the
iPhone that you won’t be able to learn more about by making your way through Apple’s
documentation. And if you get comfortable with Apple’s documentation, making your way
through uncharted territories and new technologies as Apple rolls them out will be easier.

NOTE
Xcode’s documentation browser takes you to the same information you can get to by going to Apple’s
Developer Connection web site at http://developer.apple.com.

Mailing Lists
You might also want to sign up for these handy mailing lists:

http://lists.apple.com/mailman/listinfo/cocoa-dev — This moderately high-
volume list run by Apple is primarily about Cocoa for Mac OS X. Because of the common
heritage shared by Cocoa and Cocoa Touch, however, many of the people on this list
may be able to help you. Make sure to search the list archives before asking your ques-
tion, though.

http://lists.apple.com/mailman/listinfo/xcode-users — Another list main-
tained by Apple, this one is specific to questions and problems related to Xcode.

http://lists.apple.com/mailman/listinfo/quartz-dev — This is an Apple-
maintained mailing list for discussion of the Quartz 2D and Core Graphics technologies.

Discussion Forums
These discussion forums allow you to post your questions to a wide range of forum readers:

http://devforums.apple.com — This is a web forum set up by Apple specifically for
discussing iPhone and Mac software development. Many iPhone programmers, both
new and experienced, including many of Apple’s engineers and evangelists, contribute
to these forums. It’s also the only place you can legally discuss issues with pre-release
versions of the SDK that are under nondisclosure agreements.

24594ch18.indd 532 6/24/09 11:45:41 AM

http://devforums.apple.com
http://developer.apple.com
http://lists.apple.com/mailman/listinfo/cocoa-dev
http://lists.apple.com/mailman/listinfo/xcode-users
http://lists.apple.com/mailman/listinfo/quartz-dev

CHAPTER 18: Where to Next? 533

http://www.iphonedevsdk.com — On this web forum, iPhone programmers, both
new and experienced, help each other out with problems and advice.

http://discussions.apple.com/category.jspa?categoryID=164 — This link con-
nects you to Apple’s community forums for Mac and iPhone software developers.

http://discussions.apple.com/category.jspa?categoryID=201 — This one con-
nects to Apple’s community forums for discussing the iPhone.

Web Sites
Visit these web sites for helpful coding advice:

http://www.iphonedevbook.com — This is the official web site for this book. We will
post errata as people report bugs and typos to us and maintain the most current ver-
sion of all book projects. We’ll also tell you what we’ve been working on lately and what
we’ve got in the works.

http://www.cocoadevcentral.com — This portal contains links to a great many
Cocoa-related web sites and tutorials.

http://cocoaheads.org — CocoaHeads is a group dedicated to peer support and
promotion of Cocoa. It focuses on local groups with regular meetings where Cocoa
developers can get together, help each other out, and even socialize a little bit. There’s
nothing better than knowing a real person who can help you out, so if there’s a Cocoa-
Heads group in your area, check it out. If there’s not, why not start one?

http://nscodernight.com — NSCoder Nights are weekly, organized meetings where
Cocoa programmers get together to code and socialize. Like CocoaHeads meetings,
NSCoder Nights are independently organized local events.

http://cocoablogs.com — This portal contains links to a great many blogs related to
Cocoa programming.

http://www.iphonedevcentral.org — This web site is devoted to iPhone program-
ming tutorials.

http://www.iphonesdkarticles.com/ — This site is also devoted to iPhone SDK
 tutorials.

http://stackoverflow.com/ — A community site targeted at programmers. Many
experienced iPhone programmers hang out here and answer questions.

Blogs
If you still haven’t found a solution to your coding dilemma, you might want to read these
blogs:

24594ch18.indd 533 6/24/09 11:45:41 AM

http://stackoverflow.com/
http://www.iphonedevsdk.com
http://discussions.apple.com/category.jspa?categoryID=164
http://discussions.apple.com/category.jspa?categoryID=201
http://www.iphonedevbook.com
http://www.cocoadevcentral.com
http://cocoaheads.org
http://nscodernight.com
http://cocoablogs.com
http://www.iphonedevcentral.org
http://www.iphonesdkarticles.com/

CHAPTER 18: Where to Next?534

http://theocacao.com — This blog is maintained by Scott Stevenson, an experienced
Cocoa programmer.

http://www.wilshipley.com/blog/ — Wil Shipley is one of the most experienced
Objective-C programmers on the planet. His Pimp My Code series of blog postings
should be required reading for any Objective-C programmer.

http://rentzsch.com — Wolf Rentzsch is an experienced, independent Cocoa pro-
grammer and the founder of the C4 independent developers’ conference.

http://eschatologist.net/blog/ — Chris Hanson works at Apple on the Xcode
team, and his blog is filled with great insight and information about Xcode and related
topics.

http://cocoacast.com/ — A blog and podcast about various Cocoa programming
 topics, available in both English and French.

Dave and Jeff Blogs and Twitter
Dave and Jeff are both active Twitter users. You can follow them via http://twitter.com/
davemark and http://twitter.com/jeff_lamarche. Dave and Jeff have blogs, too:

http://iphonedevelopment.blogspot.com — This is Jeff’s iPhone development blog.
It contains lots of great technical material. Be sure to check out the ongoing series on
OpenGL ES.

http://www.davemark.com — This is Dave’s little slice of everything under the sun.
There’s some technical material, but mostly just stuff that catches his attention.

More iPhone 3 Development
If you’re serious about diving more deeply into the iPhone SDK, especially if you’re inter-
ested in all the great new functionality introduced with the iPhone 3 SDK, of which we only
scratched the surface in this book, you should check out More iPhone 3 Development, also by
Dave Mark and Jeff LaMarche (Apress, 2009).

And If All Else Fails. . .
Drop Dave and Jeff an e-mail at daveandjeff@iphonedevbook.com. This is the perfect place
to send e-mails about typos in the book or bugs in our code. We can’t promise to respond to
every e-mail, but we will read all of them. Be sure to read the errata before clicking send. And
please do write and tell us about the cool applications you develop.

24594ch18.indd 534 6/24/09 11:45:41 AM

mailto:daveandjeff@iphonedevbook.com
http://theocacao.com
http://www.wilshipley.com/blog/
http://rentzsch.com
http://eschatologist.net/blog/
http://cocoacast.com/
http://twitter.com/
http://twitter.com/jeff_lamarche
http://iphonedevelopment.blogspot.com
http://www.davemark.com

CHAPTER 18: Where to Next? 535

Farewell
We sure are glad you came along on this journey with us. We wish you the best of luck and
hope that you enjoy programming the iPhone as much as we do.

24594ch18.indd 535 6/24/09 11:45:41 AM

24594ch18.indd 536 6/24/09 11:45:41 AM

537

SPECIAL CHARACTERS
/* *\ characters, 514
. . . (ellipsis), 62

A
abstract class, 256
accelerometer

accessing
accelerometer:didAccelerate: method,

480–483
overview, 478–479
UIAcceleration class, 479–480

physics of, 477–478
Rolling Marble program

BallView class, 490–494
BallViewController class, 489–490
calculating movement, 494–497
overview, 488–489

ShakeAndBreak project, 483–488
accelerometer:didAccelerate: method,

479–482, 490
accessors, 37
accessory icons, 249
accessory view, 251
accuracy, desired, 466
action argument, 284
action method, 42
action sheet, 88–92
actionSheet:didDismissWithButtonIndex:

method, 90–91
active controls, 59–60
Add Localization button, 524, 526
Add to Project setting, 26

additive primary colors, 402
addObserver:selector:name:object: method,

358
Adjust to Fit checkbox, 71
alerts, 88, 91–92
Align Horizontal Center in Container option,

64
Alignment submenu, 64
allNames method, 231, 233–234, 236–237,

239
Alpha checkbox, 66
alpha component, 403–404
Alpha Slider, 65
altitude property, 468
animated parameter, 83
App Delegate, 127–128
AppKit, 23
Apple documentation, 532
Apple Human Interface Guidelines, 50
Apple iMac, 7
Apple iPod Touch, 4
Apple Mac mini, 2
Apple Mac OS X, 20
Apple MacBook, 2, 7
application constants, 407, 518–519
application localization

architecture, 511–513
LocalizeMe application

application icon, 525–526
images, 524–525
locale identifier, 518–519
nib file, 520–521
overview, 515–518

Index

24594Index.indd 537 6/25/09 11:21:38 AM

INDEX538

project structure, 522–524
string files, 526–529
testing, 519–520

string files, 513–515
application settings

AppSettings application, 323–324
overview, 321–323
reading, 336–341
settings bundle

adding to project, 326–327
child settings view, 335–336
multivalue field, 331–332
overview, 326
property list, setting up, 327–328
secure text field setting, 331
slider setting, 333–334
text field setting, 329–330
toggle switch setting, 332–333

user defaults, changing, 341–345
Application Support folder, 29
applicationDidFinishLaunching method, 47
applicationWillTerminate: method, 354, 356,

358, 375
AppSettings application, 323–324
archiving

data objects, 362
model objects, 359–361

Archiving application
FourLines class, 363–365
overview, 363
PersistenceViewController class, 365–368

atomically parameter, 352
attributes, 38
audio toolbox framework, 190
AudioServicesCreateSystemSoundID

 function, 190
AudioToolbox.framework file, 488
AutocorrectionType key, 330
Auto-enable Return Key checkbox, 71
autorelease method, 203, 224, 235

Autoresize Subviews checkbox, 66
autorotation

autosize attributes, 100–107
overview, 99–100
restructuring view when rotated,

107–108
swapping views, 110–117

autosize attributes, 100–107
AutosizeViewController.h file, 108
AutoSizeViewController.m file, 101
AutosizeViewController.m file, 108
AutosizeViewController.xib file, 103

B
Background field, 70
Background property, 65
backgroundTap: action, 76
BallView class, 490–494
BallViewController class, 489–490
BallViewController.xib file, 489
BallViewViewController.h file, 489
blogs, 533–534
blueButton.png file, 93
BlueViewController class, 133–134, 136, 137
blueViewController property, 134
BlueView.xib file, 126
BOOL property, 344
boolForKey: method, 337
Border button, 71
brokenScreenShowing method, 487
Build and Run option, 24, 72–77
Bundle identifier, 28
bundles, defined, 175
button action method, 88
Button Fun project, 33. See also interaction
button images

control states, 94
overview, 92–93
stretchable, 94–96
viewDidLoad method, 93–94

24594Index.indd 538 6/25/09 11:21:38 AM

INDEX 539

Button segment, 87
Button_FunAppDelegate view, 44–46, 48
Button_FunViewController view, 33, 48, 52,

54–56
Button_FunViewController.m file, 39
Button_FunViewController.xib file

connecting outlets, 53–54
creating views in Interface Builder, 49–51
overview, 49
specifying actions, 54–56
testing, 56

buttonIndex argument, 91
buttonPressed method, 34, 55–56, 112, 114,

156, 158, 160, 161, 169, 175

C
camera and image library

image picker, 500–501, 502–503
overview, 499
testing, 503–509
UIImagePickerController class, 500–501

CameraViewController class, 505–509
CameraViewController.h file, 504
CameraViewController.m file, 505
CameraViewController.xib file, 504
cancel: action method, 303, 307
cancelButtonIndex property, 91
cancelPreviousPerformRequestsWithTarget:s

elector:object: method, 455
Capitalize drop-down, 71
case kImageShape: method, 419
cell tower triangulation, 465
CGAffineTransformMakeRotation class, 116
CGColor class, 399, 402–403, 415, 417, 419,

422, 431–434
CGContextLineToPoint() method, 400
CGContextMoveToPoint() method, 400
CGContextStrokePath() method, 400
CGFloat class, 402, 407
CGPoint class, 400, 404, 420

CGPointUtils.c file, 456, 459, 461
CGPointUtils.h file, 456–457, 461–462
CGRectMake function, 110, 418
CGRectZero constant, 203, 235
CGSize class, 400–401
changeColor: method, 412
changeShape: action method, 414
changeShape:method, 413
CheckListController.m file, 268
checklists, 268–273
CheckPlease touch methods, 463–464
CheckPleaseViewController.h file, 461–462
CheckPleaseViewController.m file, 462
child settings view, 335–336
childController property, 263, 265
Cinema Display, 7
Class methods, 43
Classes folder, 18–19, 33, 44, 101, 125, 452,

456–457, 461
Classes tab, 47
classic passive control, 62
Clear Context Before Drawing checkbox, 66
Clear When Editing Begins checkbox, 71
Clip Subviews checkbox, 66
CLLocation class, 468–469
CLLocationAccuracy class, 466
CLLocationManager class, 466, 471
CLLocationManagerDelegate class, 467
clockicon.png image, 154
CMYK (cyan, magenta, yellow, key) color

model, 403
Cocoa, 532
Cocoa Touch, 5–6, 23
Cocoa Touch Class option, 125
CocoaHeads, 533
color

alpha component, 403–404
color theory, 402
random, 406–407

column1 string, 182–185, 187–189

24594Index.indd 539 6/25/09 11:21:38 AM

INDEX540

connections inspector, 131
Constants.h header, 408
Contacts application, 250
content views, 119, 123, 136–139
contentView method, 215, 310–311,

317–319
contexts, 399–400, 404
Control Fun application

connecting outlets, 72
image view, 61–67
importing image, 60
overview, 60
text fields, 61–63, 67–72

control states, 42, 57, 94
Control_FunViewController.h file, 61, 73, 75,

78, 82
Control_FunViewController.m file, 62, 73, 78,

82, 84, 88, 93, 95
Control_FunViewController.xib file, 63, 79
controller class, 32–33, 75
controller header file, 177–178, 211–212,

230–231
controllers

custom pickers, 179–182
multicomponent picker, 167–170
single component picker, 160–165
writing for tables, 198–201

controllers array, 272
controllers property, 259
controls, 58–60
convenience method, 43
coordinate property, 468
coordinates system, 400–401
copyWithZone: method, 361, 365
Core Graphics framework, 117, 399, 532
Core Location. See also application

 localization
Location Manager, 466–467
Location Manager delegate, 467–470

overview, 465–466
WhereAmI application, 470–476

CoreGraphics.framework file, 488
Create Apple ID button, 3
CREATE TABLE command, 369, 374, 377
currentColor property, 413
currentPoint property, 491, 494
currentRect property, 421–422
curves, 404
custom gestures, 460–464
CustomPickerViewController.m file, 149, 179,

186–187
CustomPickerView.xib file, 178, 187
cyan, magenta, yellow, key (CMYK) color

model, 403

D
Dalrymple, Mark, 5
dash patterns, 404–406
data model object, creating, 294–296
data objects, 362–363
data persistence

Archiving application, 363–368
/Documents folder, 348–350
file saving, 350–351
overview, 347
Persistence application, 353–363

classes, editing, 355–359
creating project, 353–354
model objects, archiving, 359–361
NSCopying, 361–363
overview, 353
view, designing, 354

persisting application data, 351–353
SQLite3

database, creating, 369–370
overview, 368
setting up project, 371–378

dataFilePath method, 354, 356

24594Index.indd 540 6/25/09 11:21:38 AM

INDEX 541

datasource methods, 239–240
datePicker method, 146, 156–158
DatePickerViewController class, 149, 153,

155, 157
DatePickerViewController.m file, 149
DatePickerView.xib file, 156
dealloc method, 117, 310
deep mutable copies, 228–230
default autosize settings, 105
delegates, 44, 148
Delete button, 437
DeleteMeController.h file, 288, 292
dependent component pickers, 170–177
Dependent tab, 177
DependentComponentPickerView class, 154
DependentComponentPickerView

Controller.m file, 149, 173, 177
DependentComponentPickerView.xib file,

172
desired accuracy, setting, 466
detail disclosure button, 249
Detail pane, 17
detail text label, 204
Detail View pane, 17
DetailDisclosureController class, 265
development base language, 511
Did End on Exit event, 73, 311
didReceiveMemoryWarning method, 135
directional controller, 482
Disabled field, 70
disabled state, 42
disclosure button view, 261–268
disclosure indicator, 249
DisclosureButtonController class, 266, 286
DisclosureButtonController.m file, 261, 263
DisclosureDetailController class, 262–263
DisclosureDetailController.h file, 261
DisclosureDetailController.m file, 261–262
DisclosureDetail.xib file, 262

discussion forums, 532–533
displayNameForKey:value: function, 518
distance filter, 466–467
distance value, 469
Do Something button, 87, 92–93
/Documents folder, 16, 348–350
Done button, 73
dot notation, 38
Double content pane, 170
DoubleComponentPickerView class, 154
DoubleComponentPickerViewController.m

file, 149, 167
DoubleComponentPickerView.xib file, 166
doubleLabel label, 452–454
DoublePicker view, 172
doubleTap method, 452–456
Download the Free SDK button, 3
draw method, 427, 431, 435
drawing

drawing application, 398–399
GLFun application, 424–436
OpenGL, 424
overview, 397–399
Quartz

colors, 402–404
context, 404
coordinates system, 400–401
graphics contexts, 399–400
shapes, 404
tools, 404–406

QuartzFun application
application constants, defining, 407
color, creating random, 406–407
images, drawing, 418–420
lines, drawing, 415–416
optimizing, 420–424
outlets and actions, 411–413
overview, 406
QuartzFunViewController.xib, updating,

413–414

24594Index.indd 541 6/25/09 11:21:38 AM

INDEX542

shapes, drawing, 417–418
skeleton, 408–411

Drawing checkboxes, 65–66
drawRect: method, 399, 406, 410, 415, 417,

421, 494

E
Edit button, 437
edit mode, 251, 281
editable detail panes

controllers, creating, 296–300
data model object, creating, 294–296
detail view controller, creating, 300, 315
overview, 294

editingInfo dictionary, 502
editingStyle parameter, 290–291
Editor pane, 17
ellipses, 417–418
ellipsis (...), 62
Enabled checkbox, 94
enabled property, 94
encodeWithCoder: method, 296, 365
encodeWithEncoder: method, 360
End caps, 94
eraseMe: method, 455
error notifications, 469–470
errorMsg command, 369, 374, 377

F
fabsf() function, 448
factory method, 43
Favorites tab, 250
fieldLabels variable, 302, 309, 312
filename method, 349–350, 365, 373
File's Owner icon, 54, 108, 113–114, 443,

447, 453, 457, 462
fill color, 400
first responder, 438
First Responder file, 21

FirstLevelViewController control, 265–266,
272, 279

FirstLevelViewController.m file, 266, 272
flag.png file, 524
Flexible Space Bar Button Item, 414
flipside view, 325
FlipsideView class, 325
FlipsideViewController class, 343
FlipsideViewController.h file, 341
floatForKey: method, 337
font size, 208–209
Foo button, 112
fopen() function, 348
forum readers, 532
forwarding events, 439–440
Foundation framework classes, 23
FourLines class, 363–365, 367, 526–529
frame property, 110, 117
Frameworks subfolder, 18–19
fromLocation object, 469

G
gamut, defined, 402
genstrings method, 514, 527
gesture notification methods, 441–442
gestures, defined, 438
getCameraPicture: method, 507
getDistanceFrom: method, 469
getters, 37
GLfloats class, 434
GLFun application, 424–436
GLFunView class, 425–427
GLFunViewController.h file, 424
GLFunViewController.xib file, 427, 435
GLFunView.h file, 427
GPS, 465
gradients, 404–406
graphics contexts, 399–400, 404

24594Index.indd 542 6/25/09 11:21:38 AM

INDEX 543

grouped sections
controllers, implementing, 222–225
importing data, 221–222
index, adding, 226–227
overview, 220
views, building, 220

grouped tables, 195–196
Groups & Files pane, 17, 19, 27, 33, 48–49,

63, 113

H
handleSearchForTerm: method, 237
Hanson, Chris, 534
Hardware menu, 103
"Hello, World!" project

finalizing, 25–29
Interface Builder, 19–25
overview, 13
setting up in Xcode, 13–19

Hello World folder, 17
Hello World icon, 25
Hello World label, 24
Hello World_Prefix.pch extension, 18
Hello World.app file, 19
Hello_World-Info.plist file, 18, 27
Hello_WorldViewController.xib file,

18–19, 21
Hidden checkbox, 66
highlighted state, 42, 94
highlightedImage property, 203
historical subtractive primaries, 402
horizontalAccuracy property, 468
hue, saturation, lightness (HSL) color model,

403
hue, saturation, value (HSV) color model,

403

I
IBAction keyword, 36, 41
IBOutlet keyword, 34, 127
Icon file, 27–28, 484
icon.png image, 27
IDE (integrated development

environment), 4
Ignore button, 15
iMac, 7
Image combo box, 154
image picker, 499–501
image picker controller delegate, 502–503
image property, 203
image resources, 179
image view

Alpha Slider, 65
Background, 65
building interface, 63
determining actions, 62
determining outlets, 61–62
Drawing checkboxes, 65–66
Interaction checkboxes, 67
Mode attribute, 64–65
overview, 61–64
resizing, 64
Tag attribute, 65

imageNamed: method, 183, 513
imagePickerControllerDidCancel: method,

502–503, 509
imagePickerController:didFinishPickingImag

e:editingInfo: method, 502, 508
Images subfolder, 93
imageView method, 203, 487
#import statements, 273
indent level, 206
indexed sections

controllers, implementing, 222–225
importing data, 221–222
index, adding, 226–227

24594Index.indd 543 6/25/09 11:21:38 AM

INDEX544

overview, 220
views, building, 220

indexed tables, 195–196
indexPath method, 271–272, 310–311
indexPath variable, 201
Information Property List row, 484
initialDistance variable, 457–460
initWithCoder: method, 296, 360–361, 365,

410, 431, 494
initWithContentsOfFile method, 162, 175
initWithFrame: method, 410, 494
initWithNibName method, 133
initWithRootViewController: method, 254
INSERT OR REPLACE SQL statement, 376
Inspector, 24–25
instance variables, 34
integrated development environment

(IDE), 4
interaction

application delegate, 44–47
Button Fun project, 33
Button_FunViewController.xib, 49–56

actions, specifying, 54–56
outlets, connecting, 53–54
overview, 49
testing, 56
views, creating, 49–51

MainWindow.xib, 47–48
MVC paradigm, 31–32
overview, 31
View Controller

actions, 36–44
outlets, 34–44
overview, 33–34

Interaction checkboxes, 67
Interface Builder

"Hello, World!" project, 19–25
table view cells, designing in, 217–219
views, creating in, 49–51

interfaceOrientation parameter, 101–102,
109–110

intForKey: method, 337
iPhone Developer Program, 15, 442
iPhone Human Interface Guidelines, 50, 414
iPhone Simulator folder, 29
iphone.png image, 409, 418, 423–424
iPod Touch, 4
isSourceTypeAvailable: method, 501

K
kBreadComponent constant, 168–170
kCLDistanceFilterNone constant, 467
kCLErrorDenied error code, 469
kCLErrorLocationUnknown error code,

469–470
keyboard, closing, 73, 77
Keyboard Type pop-up menu, 72
keys array, 237–239
kFilename method, 354–356, 366, 372–373
kFillingComponent constant, 169
kFromYearRowIndex constant, 302, 308, 312
kLabelTag constant, 301, 310–311, 317
kNameRowIndex constant, 302, 308, 312
kNameValueTag constant, 211, 214–215, 220
Knaster, Scott, 5
kPartyIndex constant, 302, 308, 312
kToYearRowIndex constant, 302, 308, 312

L
label outlet, 457
labels, 22–25, 77–81
Landscape icon, 113
landscape mode, 100
Landscape window, 114
landscapeBarButton outlet, 114
landscapeFooButton outlet, 114
lastCurrentPoint variable, 461, 463–464
lastDrawTime method, 496–497
lastIndexPath method, 271–272

24594Index.indd 544 6/25/09 11:21:38 AM

INDEX 545

lastPreviousPoint variable, 461, 463
lastVal method, 182–183, 188
latitude, 468–469
Layout menu, 64
lazy loading, 134
Learn Objective-C on the Mac, 5
leftSwitch argument, 83, 86
Leopard, 2
Library palette, 22
lineLengthSoFar variable, 461, 463
lines, 404, 415–416
list property, 299
listData array, 201
[locale localeIdentifier] argument, 511–521,

524–526
localizable.strings file, 514
localization folder, 512
LocalizeMe application

application icon, 525–526
images, 524–525
locale identifier, 518–519
nib file, 520–521
overview, 515–518
project structure, 522–524
string files, 526–529
testing, 519–520

LocalizeMeViewController.h file, 516
LocalizeMeViewController.m file, 517
LocalizeMeViewController.xib file, 516, 520,

522–523
Location Manager, 466–467
Location Manager delegate, 467–470
location updates, 468
longitude, 468–469

M
Mac mini, 2
Mac OS X, 20
MacBook, 2, 7
mailing lists, 532

main() method, 18
main bundle, 175
main.m extension, 18
MainView class, 325
MainViewController.m file, 339
MainView.xib window, 339
MainWindow.xib file, 18, 47, 123, 125,

128–132, 151, 253, 255–256
Make File Localizable button, 528
Make Localizable button, 525
MaximumValueImage class, 334
messageLabel method, 443–445
MinimumValueImage class, 334
Mode attribute, 64–65
model objects, archiving, 359–361
Model-View-Controller (MVC) paradigm,

31–32
MoveMeController.m file, 281
multicomponent pickers, 165–170
Multiple Touch checkbox, 67
multitouch technology

architecture, 440–442
custom gestures, 460–464
overview, 437
pinches, detecting, 456–460
responder chain, 438–440
swipes, implementing multiple, 449–451
Swipes application, 446–449
taps, detecting multiple, 452–456
terminology, 438
Touch Explorer application, 442–445

multivalue field, 331–332
multiview applications

animating transitions, 139–142
architecture, 123
overview, 119–121
View Switcher application

App Delegate, 127–128
content views, 136–139
MainWindow.xib, 128–132

24594Index.indd 545 6/25/09 11:21:38 AM

INDEX546

nib files, 125–126
overview, 122–125
SwitchViewController.h, 128
SwitchViewController.m, 132
view controller, 125–126

multiview controllers, 123
mutableCopy method, 228–229
mutableDeepCopy method, 228–230, 233,

236
mutators, 37
MVC (Model-View-Controller) paradigm,

31–32
MyViewController.xib file, 52

N
Name text field, 72–73
nameField file, 61–62, 73, 75, 78, 82, 92
Nav App Delegate icon, 255
NavAppDelegate.m file, 255
navController property, 254–255, 307–309
Navigation Bar, 413
navigation button, 249
navigation controllers

editable detail panes
controllers, creating, 296–300
data model object, creating, 294–296
detail view controller, creating,

300–315
overview, 294

Nav application
checklist view, 268–273
disclosure button view, 261–268
overview, 249–252
skeleton, 252–260

overview, 247–248
Return button, 316–319
rows

controls on, 274–280
deletable, 288–294
moveable, 281–288

stacks, 248
view controllers, 248–249

navigation-based application, 121
New Project assistant, 15
newText argument, 79
NextSTEP, 6, 20
nib files, 21–22, 125–126, 520–521
nil object, 271
nonatomic attribute, 38
normal control state, 42, 94
NSArray class, 23, 159, 170–172, 176, 222,

224, 350–352, 367
NSBundle class, 175, 187–188
NSCaseInsensitiveSearch option, 238
NSCoder class, 359–361
NSCoder Nights, 533
NSCoding class, 295–296, 359–361, 362,

364–365, 367
NSCopying class, 359, 361–365
NSDate class, 158, 336
NSDictionary class, 162, 222, 224, 228–230,

233–234, 350–352, 367, 502
NSDocumentDirectory class, 349, 355–356,

366, 373
NSEnumerator class, 229
NSIndexPath class, 200, 318
NSInteger class, 161
NSKeyedArchiver class, 362, 366, 373
NSKeyedUnarchiver class, 299, 362, 367, 374
NSLocale class, 518
NSLocalizableString class, 528
NSLocalizedString class, 514, 519, 526
NSMutableCopying class, 228
NSMutableData class, 351, 362, 366–367,

373–374
NSMutableDictionary class, 228–230
NSNotFound class, 233, 237–238
NSNotification class, 355–357, 366, 372–373
NSNotificationCenter class, 355, 358, 367,

375

24594Index.indd 546 6/25/09 11:21:39 AM

INDEX 547

NSNumber class, 308, 312–313, 336, 341
NSObject class, 455
NSPredicate class, 385
NSRange class, 238
NSSearchPathForDirectoriesInDomain func-

tion, 349
NSSet class, 230, 441, 449
NSString class, 23, 185, 200, 238, 378
NSTemporaryDirectory() function, 350
NSURL class, 352
NSUserDefaults class, 322, 329, 336,

343–345, 349, 359
NSUserDomainMask class, 349, 355–356,

366, 373
NSValue class, 502
NSView class, 420
numberField file, 61–62, 73, 75, 78, 82
numInRow method, 182–183, 188

O
Objective-C, 5, 20, 32, 253, 534
object-relational mapping (ORM), 369
Opaque checkbox, 65–66
Opaque tag, 72
OpenGL ES

GLFun application, 424–436
overview, 397–398

OpenGLES2DView subclass, 426–428
OpenGLES.framework file, 435
OpenSTEP, 20
Organizer window, 15
origin element, 401, 418
ORM (object-relational mapping), 369
Other Sources subfolder, 18
otherButtonTitles parameter, 90
outlets

adding to implementation file, 39–44
adding to view controllers, 36–39, 78–79
overview, 34–35

Owner icon, 21

P
painter's model, 397
passive controls, 59–60
patterns, 404–406
performSelector:afterDelay: method, 189
performSelector:withObject:afterDelay:

method, 188, 449, 455
Persistence application

classes, editing, 355–359
creating project, 353–354
model objects, archiving, 359–361
NSCopying class, 361–363
overview, 353
view, designing, 354

PersistenceViewController class, 358,
365–368

photo library. See camera and image library
Pick from Camera Roll button, 505
Pick from Library button, 503, 505
pickerData array, 161–162
pickers

custom
audio toolbox framework, 190
controller header file, 177–178
controllers, implementing, 179–182
image resources, adding, 179
overview, 177
spin method, 182–183
viewDidLoad method, 183–186
views, building, 178–179

datasources, 148
date, 155–159
delegates, 148
dependent component, 170–177
multicomponent, 165–170
overview, 145
Pickers application, 146–147
single component, 159–165

Pickers application, 146–147
PickersAppDelegate.h class, 150

24594Index.indd 547 6/25/09 11:21:39 AM

INDEX548

pickerView:didSelectRow:inComponent
method, 172

pinches, detecting, 456–460
PinchMeViewController.h file, 457
PinchMeViewController.m file, 457
Placeholder field, 70, 72
playerWon method, 188–189
.png (portable network graphic) files, 25–26,

60, 151, 266
polygons, 404
pops, defined, 248
popToRootViewControllerAnimated:

method, 254
portable network graphic (.png) files, 25–26,

60, 151, 266
portrait mode, 100
portrait property, 99–100, 102, 115–116
portraitBarButton outlet, 114
portraitFooButton outlet, 114
#pragma directives, 164, 522, 524
pragmatics, 164
PreferenceSpecifiers array, 327–329, 332
presentModalViewController:animated:

method, 501
president class, 299, 302, 308, 310, 312
PresidentDetailController class, 297, 302–303
PresidentDetailController.h file, 300
PresidentDetailController.m file, 297, 303,

316
Presidents data model object, 359
PresidentsViewController class, 302
Preview.app file, 93
previousPoint value, 494
Products subfolder, 18–19
Project menu, 61
project template, 15
project window, Xcode, 16–19
property list, 27, 327–328
PSMultiValueSpecifier, 331
pushes, defined, 248

Q
Quartz

colors, 402–404
coordinates system, 400–401
graphics contexts, 399–400, 404
overview, 397–399
shapes, 404
tools, 404–406

Quartz 2D Programming Guide, 404
QuartzCore.framework file, 435
QuartzFun application

application constants, defining, 407
color, creating random, 406–407
images, drawing, 418–420
lines, drawing, 415–416
optimizing, 420–424
outlets and actions, 411–413
overview, 406
QuartzFunViewController.xib, updating,

413–414
shapes, drawing, 417–418
skeleton, 408–411

QuartzFun folder, 418
QuartzFunController.m file, 426
QuartzFunViewController.h file, 411, 425
QuartzFunViewController.m file, 411, 425
QuartzFunViewController.xib file, 413–414
QuartzFunView.h file, 408–409, 411, 421, 428
QuartzFunView.m file, 415, 420

R
RAM, 7
rectangles, 417–418
redColor method, 402
redrawRect method, 421–424
refreshFields method, 341
Rentzsch, Wolf, 534
resetSearch method, 239
resignFirstResponder method, 75
resizing image view, 64

24594Index.indd 548 6/25/09 11:21:39 AM

INDEX 549

Resources folder, 18–19, 26–27, 61, 103, 123,
175, 197, 453

responder chain, 438–440
retain attribute, 38, 43, 96
Return button, 316–319
Return Key pop-up, 71
return key type, 310
Return Key value, 72
RGB color model, 402
RGBA color model, 403
rightSwitch argument, 83, 86
Rolling Marble program

BallView class, 490–494
BallViewController class, 489–490
calculating movement, 494–497
overview, 488–489

root directory, 19
root view controllers, 150–155, 248
rootController outlet, 155
RootViewController control, 253, 257
RootViewController.m file, 253, 257, 279,

286, 292, 314
rotation transformation, 116
Round Rect Button, 51, 92, 156
row height, 208–209
row method, 200, 271
row selection, 206
rowAsNum method, 312–313
RowControlsController class, 280
RowControlsController.h file, 274, 280
RowControlsController.m file, 274–275
rowImage property, 259
rows

controls on, 274–280
deletable, 288–294
moveable, 281–288

RYB color model, 402

S
sandbox, 6
save: action method, 303
SDK (software development kit), 2
search bar

controller header file, updating, 230–231
controller implementation, modifying,

233–241
allNames method, 236–237
datasource methods, 239–240
implementing search, 237–239
overview, 233–236
search bar delegate methods, 240–241
table view delegate method, 240
viewDidLoad method, 239

deep mutable copies, 228–230
overview, 227
preparation for implementing, 227
views, modifying, 231–233

searchBarSearchButtonClicked: method, 240
searchBar:textDidChange: method, 241
second-level controllers

checklists, 268–273
disclosure button view, 261–268
editable detail panes

controllers, creating, 296–300
data model object, creating, 294–296
detail view controller, creating, 300,

315
overview, 294

rows
controls on, 274–280
deletable, 288–294
moveable, 281–288

SecondLevelViewController class, 257,
259–261, 268, 288

SecondLevelViewController.h file, 256–257,
259, 263

24594Index.indd 549 6/25/09 11:21:39 AM

INDEX550

SecondLevelViewController.m subclass, 256
secondsSinceLastDraw method, 496
section method, 200
sections, defined, 196
SectionsViewController.h file, 222
SectionsViewController.xib file, 220
SectionViewController.xib file, 225
Secure checkbox, 71
secure text field setting, 331
segmented control, 58, 81–82, 85–86, 413
Select from Camera Roll button, 503
SELECT statement, 369, 378
selected state, 42
selectedSegmentIndex property, 82
selectExistingPicture action, 505
selectFromCameraRollButton outlet, 504
self.currentPoint method, 497
self.view method, 91
sender argument, 36, 57, 65, 77
sender attribute, 42
setColumn1 method, 184
setCurrentPoint: method, 494
setEditing:animated: method, 281
setNeedsDisplay method, 409–410, 420, 423
setNeedsDisplayInRect: method, 420, 496
setStatusText method, 41
setters, defined, 37
Settings application, 321
Settings Application Schema Reference, 336
settings bundle

adding to project, 326–327
child settings view, 335–336
multivalue field, 331–332
overview, 326
property list, setting up, 327–328
secure text field setting, 331
slider setting, 333–334
text field setting, 329–330
toggle switch setting, 332–333

setValue:forKey: method, 184–185

shake detection
overview, 477–478
physics of, 477–478
Rolling Marble program

BallView class, 490–494
BallViewController class, 489–490
calculating movement, 494–497
overview, 488–489

ShakeAndBreak project, 483–488
UIAcceleration class, 479–480

ShakeAndBreak project, 483–488
ShakeAndBreakViewController.h file, 485
ShakeAndBreakViewController.xib file, 485
shapes, 404
ShapeType property, 407–408, 421, 427–428
sharedAccelerometer method, 478
Shipley, Wil, 534
shouldAutorotateToInterfaceOrientation:

method, 101–102, 117
Show at Launch check box, 14
showButton method, 188
Simple_TableViewController.h file, 198
Simple_TableViewController.xib file, 197
SimpleTableIdentifier class, 199–200,

202–203, 218
single component pickers, 159–165
SingleComponentPickerView class, 154
SingleComponentPickerViewController

class, 160
SingleComponentPickerViewController.h

file, 159
SingleComponentPickerViewController.m

file, 149, 160, 164
SingleComponentPickerView.xib file, 160
singleLabel label, 452–454
singleTap method, 452–456
size element, 400–401, 418–420, 423–424,

433–434
size inspector, 104
Size to Fit option, 64

24594Index.indd 550 6/25/09 11:21:39 AM

INDEX 551

slider setting, 333–334
sliderChanged: method, 78–79
sliderLabel method, 81
sliders, 58, 77–81
software development kit (SDK), 2
sourceType method, 507
Spin button, 147
spin method, 178–179, 182–183, 188–189
SQL (Structured Query Language), 368
SQLITE_OK command, 369–370, 374–375,

377–378
SQLite3

database, creating, 369–370
overview, 368
setting up project to use, 371–378

sqlite3_exec function, 369, 374, 377
sqlite3_open command, 369, 374, 377
stacks, defined, 248
standardUserDefaults method, 336, 343–344
state machine, 398
statedictionary.plist property, 172, 175
states array, 176
stateZips method, 175–176
static controls, 59–60
status bar, 100
statusText method, 41, 54
Stevenson, Scott, 534
stretchable images, 94–96, 513–515
string files, 513–515
stringByAppendingPathComponent:

method, 349
stringValue property, 341
stroke color, 400
struct method, 400
Structured Query Language (SQL), 368
subclasses, 32
subcontrollers, 248
subviews, 23, 211–215
Summary tab, 525
swap file, 7

SwapViewController.h file, 112
SwapViewController.m file, 114
SwapViewController.xib file, 113
swipes, 449–451
Swipes application, 446–449
SwipesViewController.h file, 446–447, 450
SwipesViewController.m file, 447, 450
SwipesViewController.xib file, 447
switch statement, 416, 419
Switch View Controller icon, 131
Switch Views button, 122, 131
switchChanged: action, 86
switches, 81–82, 85–86
Switches segment, 87
SwitchViewController class, 127
switchViewController outlet, 128, 131
SwitchViewController.h header file, 128
SwitchViewController.m file, 132
switchViews method, 128, 130–131, 134, 139

T
tab bar, 120
Tab Bar Controller, 151–154
tab bars, 145, 149–155
table view delegate method, 240
table views. See also navigation controllers

cells
Cells application, 211
overview, 210
subviews, adding, 215
UITableViewCell subclass, 216–220

configurations, 205–210
grouped and indexed sections, 220–227

controllers, implementing, 222–225
importing data, 221–222
index, adding, 226–227
overview, 220
views, building, 220

grouped tables, 195–196
images, adding, 202–203

24594Index.indd 551 6/25/09 11:21:39 AM

INDEX552

implementing, 197–201
indexed tables, 195–196
overview, 193–195
search bar

controller header file, updating,
230–231

controller implementation, modifying,
233–241

deep mutable copies, 228–230
overview, 227
preparation for implementing, 227
views, modifying, 231–233

tableView parameter, 200
tableView:accessoryButtonTappedForRow

WithIndexPath: method, 265
tableView:accessoryTypeForRowWithIndex

Path: method, 285
tableView:canMoveRowAtIndexPath:

method, 285
tableView:cellForRowAtIndexPath: method,

202, 208, 219, 225, 270, 277, 284, 316
tableView:cellForRowWithIndexPath:

method, 214
tableView:didSelectRowAtIndexPath:

method, 240, 260, 265, 271, 278, 300,
302

tableView:editingStyleForRowAtIndexPath:
method, 285

tableView:moveRowAtIndexPath:fromIndex
Path: method, 285

tableView:numberOfRowsInSection
 method, 199

tableView:numberOfRowsInSection:
method, 259

tableView:titleForHeaderInSection method,
225

tableView:willSelectRowAtIndexPath:
method, 240, 313

tag attribute, 65
tags, 212

Take New Picture button, 503, 505
taps, 438, 452–456
tapsLabel outlet, 443
TapTaps application, 452
TapTapsViewController.h file, 452–453
TapTapsViewController.m file, 453, 455
TapTapsViewController.xib file, 453
target argument, 284
tempValues variable, 302–303, 307–308,

310, 312–313
text fields, 61–63, 70–71, 329–330
Text Input Traits section, 72
text labels, 204
textField pointer, 311
textFieldBeingEdited method, 302–303,

307–308, 312–313
textFieldDidBeginEditing: method, 313
textFieldDidEndEditing: method, 303
textFieldDone: method, 311, 317
textFieldDoneEditing: method, 73
textLabel property, 201
Texture2D class, 435
timeIntervalSinceNow method, 496
tmp directory, 350
toggle switch setting, 332–333
toggleEdit: method, 290
toggleMove: method, 284
toggleShowHide: method, 84, 86
toLocation object, 469
toolbar, 17, 120
Tools menu, 63
Touch Explorer application, 442–445
Touch Up Inside, 55
Touch Up Inside event, 76, 114, 156, 505
touches, defined, 438. See also multitouch

technology
touchesBegan: method, 420
touchesBegan:withEvent: method, 410,

441–442, 448–449, 455, 459, 463
touchesCancelled:withEvent: method, 442

24594Index.indd 552 6/25/09 11:21:39 AM

INDEX 553

touchesEnded: method, 420
touchesEnded:withEvent: method, 410, 442
touchesLabel outlet, 443
touchesMoved: method, 420
touchesMoved:withEvent: method, 410, 442,

448, 450, 459
TouchExplorer application, 445, 452
TouchExplorerViewController.h file, 442
TouchExplorerViewController.xib file, 443
transform property, 117
transformations, defined, 116
tripleLabel label, 452–454

U
UIAcceleration class, 479–480
UIAccelerometer class, 478–479
UIAccelerometerDelegate class, 489
UIAccerometerDelegate class, 478
UIActionSheet class, 89, 91
UIActionSheetDelegate class, 88, 91
UIAlertViewDelegate class, 92
UIApplication class, 44, 356, 439
UIApplicationDelegate class, 45
UIApplicationWillTerminateNotification

class, 355, 357–358, 367, 375
UIBarButtonItemStyleBordered class, 284
UIBarButtonItemStyleDone class, 309
UIColor class, 352, 402–404, 406, 410,

431–432
UIColor-Random.h file, 406
UIControl class, 59–60, 71
UIControlStateHighlighted class, 94
UIControlStateNormal class, 42, 93–94
UIImage class, 183
UIImagePickerController class, 504, 507
UIImagePickerControllerCropRect class, 502
UIImagePickerControllerDelegate class, 504
UIImagePickerControllerOriginalImage class,

502

UIImagePickerControllerSourceTypeCamera
class, 501

UIImagePickerControllerSourceTypePhoto
Library class, 501, 508

UIImagePickerControllerSourceType
SavedPhotosAlbum class, 501, 507

UIImageView class, 64, 184, 515
UIInterfaceOrientationLandscapeLeft

 function, 102
UIInterfaceOrientationLandscapeRight

 function, 102
UIInterfaceOrientationPortrait function,

101–102, 109
UIInterfaceOrientationPortraitUpsideDown

function, 101–102
UIKit framework, 22, 32
UILabel class, 480
UILabels class, 215
UINavigationController class, 121, 123, 248,

254, 309, 438, 504
UINavigationControllerDelegate class, 504
UIPickerView class, 163, 165, 168–170,

174–177, 182, 185
UIPickerViewDataSource class, 159, 163
UIPickerViewDelegate class, 159
UIResponder class, 438
UIReturnKeyDone class, 311, 317
UISearchBarDelegate class, 230
UISegmentedControl class, 82
UISlider class, 79, 333, 440
UIStatusBarHidden row, 484
UISwitch class, 332, 344, 440
UITabBarController class, 121, 123, 149–150,

248, 438
UITableView class, 194, 200, 202, 235–236
UITableViewCell class, 194–195, 200, 202,

210, 216–220
UITableViewCellAccessoryNone class, 272

24594Index.indd 553 6/25/09 11:21:39 AM

INDEX554

UITableViewCellEditingStyleDelete class, 291
UITableViewCellEditingStyleInsert class, 291
UITableViewCellEditingStyleNone class, 285,

291
UITableViewCellStyleDefault class, 205
UITableViewController class, 253, 256–257,

259, 309
UITableViewDataSource class, 194, 198, 211,

222
UITableViewDelegate class, 194, 198, 205,

211, 222
UITableViewRowAnimation class, 291
UITableViewRowAnimationFade class, 291
UITableViewStylePlain class, 266, 314–315
UITextField class, 301–302, 311, 313,

317–319
UITextFieldDelegate class, 210, 302, 310
UITouch class, 441, 458–459, 461
UIView class, 22, 65, 141–142, 426–428, 501
UIViewController class, 32, 34, 52, 128–130,

137
UIWindow class, 48
unarchiver property, 299–300
unarchiving data objects, 362–363
updateInterval value, 480
updateLabelsFromTouches: method, 445
updating

Location Manager, 474–475
QuartzFunViewController.xib, 413–414

User Defaults mechanism, 322
User Interaction Enabled checkbox, 67
user interfaces

action sheet, 88–92
Build and Run option, 72–77
buttons, 88, 92–96
Control Fun application

connecting outlets, 72
image view, 61–67
importing images, 60

overview, 60
text fields, 61–63, 67–72

controls, 58–60
labels, 77–81
overview, 57
segmented control, 81–82, 85–86
sliders, 77–81
switches, 81–82, 85–86

useRandomColor method, 408–413,
425–427, 431

V
valueForKey: method, 185, 375
velocity = velocity + acceleration formula,

491
verticalAccuracy property, 469
view controllers

actions, 36–44
creating, 125–126
detail, 300–315
multiview controllers, 123
outlets, 34–44
overview, 33–34
root, 253

View icon, 21–22, 63
View Mode button, 63–64, 255
view outlet, 137
view property, 112, 116
View Switcher application

App Delegate, 127–128
content views, 136–139
MainWindow.xib, 128–132
nib files, 125–126
overview, 122–125
SwitchViewController.h, 128
SwitchViewController.m, 132
view controller, 125–126

View window, 23, 53, 63
View_Switcher App Delegate icon, 131

24594Index.indd 554 6/25/09 11:21:39 AM

INDEX 555

View_SwitcherAppDelegate.h file, 127
View_Switcher-Info.plist file, 125
View-Based Application icon, 16
View-Based Application template, 60, 111
viewDidAppear method, 142
viewDidDisappear method, 142
viewDidLoad method, 93–94, 183–186, 239
viewDidUnload method, 43
views

creating, 49–51
custom pickers, 178–179
designing, 354
labels, adding to, 22–25
multicomponent picker, 166–167
restructuring when rotated, 107–108
single component picker, 160
swapping, 110–117

viewWillAppear: method, 261, 300, 345
viewWillDisappear: method, 345

W
warpFactorLabel property, 341
web sites, 533
whiteButton.png file, 93
Wi-Fi Positioning Service (WPS), 465
willAnimateFirstHalfOfRotationTo

InterfaceOrientation:duration
method, 116–117

willAnimateRotationToInterfaceOrientation:
duration method, 108

willAnimateSecondHalfOfRotationFrom
InterfaceOrientation:duration
method, 108

Window-based Application template, 149,
253

winLabel outlet, 179
Words drop-down, 71
WPS (Wi-Fi Positioning Service), 465
writeToFile:atomically: method, 351–352

X
Xcode, 4, 13–19
.xib files, 20, 153

Y
YellowViewController class, 126, 128, 132,

134, 136, 138
yellowViewController property, 134
YellowView.xib file, 126

Z
zips array, 176

24594Index.indd 555 6/25/09 11:21:39 AM

24594Index.indd 556 6/25/09 11:21:39 AM

24594Index.indd 557 6/25/09 11:21:39 AM

24594Index.indd 558 6/25/09 11:21:40 AM

	Prelims
	Contents at a Glance
	Contents
	Welcome to the Jungle
	What This Book Is
	What You Need Before You Can Begin
	What You Need to Know Before You Begin
	What’s Different About Coding for iPhone?
	Only One Running Application
	Only One Window
	Limited Access
	Limited Response Time
	Limited Screen Size
	Limited System Resources
	No Garbage Collection
	Some New Stuff
	A Different Approach

	What’s in This Book
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18

	What’s New in This Update?
	Are You Ready?

	Appeasing the Tiki Gods
	Setting Up Your Project in Xcode
	The Xcode Project Window

	Introducing Interface Builder
	What’s in the Nib File?
	Adding a Label to the View

	Some iPhone Polish— Finishing Touches
	Ready to Compile and Run

	Bring It on Home

	Handling Basic Interaction
	The Model-ViewController Paradigm
	Creating Our Project
	Creating the View Controller
	Outlets
	Actions
	Adding Actions and Outlets to the View Controller
	Adding Actions and Outlets to the Implementation File

	Using the Application Delegate
	Editing MainWindow.xib
	Editing Button_FunViewController.xib
	Creating the View in Interface Builder
	Connecting Everything
	Trying It Out

	Bring It on Home

	More User Interface Fun
	A Screen Full of Controls
	Active, Static, and Passive Controls
	Creating the Application
	Importing the Image
	Implementing the Image View and Text Fields
	Adding the Image View
	Adding the Text Fields
	Set the Attributes for the Second Text Field
	Connecting Outlets

	Build and Run
	Making the Keyboard Go Away When Done Is Tapped
	Touching the Background to Close the Keyboard

	Implementing the Slider and Label
	Determining Outlets
	Determining Actions
	Adding Outlets and Actions
	Adding the Slider and Label
	Connecting the Actions and Outlets

	Implementing the Switches, Button, and S egmented Control
	Determining Outlets
	Determining Actions
	Adding the Switches, Button, and Segmented Control
	Connecting the Switch Outlets and Actions
	Adding the Button

	Implementing the Action Sheet and Alert
	Conforming to the Action Sheet Delegate Method
	Showing the Action Sheet
	The Action Sheet Delegate and Creating an Alert

	Spiffing Up the Button
	The viewDidLoad Method
	Control States
	Stretchable Images

	Being a Good Memory Citizen
	Crossing the Finish Line

	Autorotation and Autosizing
	Handling Rotation Using Autosize Attributes
	Specifying Rotation Support
	Designing an Interface with Autosize Attributes
	Autosize Attributes
	Setting the Buttons’ Autosize Attributes

	Restructuring a View When Rotated
	Declaring and Connecting Outlets
	Moving the Buttons on Rotation

	Swapping Views
	Determining Outlets
	Determining Actions
	Declaring Actions and Outlets
	Designing the Two Views
	Implementing the Swap and the Action

	Rotating Out of Here

	Multiview Applications
	The View Switcher Application
	The Architecture of a Multiview Application
	Anatomy of a Content View

	Building View Switcher
	Creating Our View Controller and Nib Files
	Modifying the App Delegate
	SwitchViewController.h
	Modifying MainWindow.xib
	Writing SwitchViewController.m
	Implementing the Content Views

	Animating the Transition
	Switching Off

	Tab Bars and Pickers
	The Pickers Application
	Delegates and Datasources
	Setting Up the Tab Bar Framework
	Creating the Files
	Adding the Root View Controller

	Implementing the Date Picker
	Implementing the Single Component Picker
	Declaring Outlets and Actions
	Building the View
	Implementing the Controller as Datasource and Delegate

	Implementing a Multicomponent Picker
	Declaring Outlets and Actions
	Building the View
	Implementing the Controller

	Implementing Dependent Components
	Creating a Simple Game with a Custom Picker
	Writing the Controller Header File
	Building the View
	Adding Image Resources
	Implementing the Controller
	The spin Method
	The viewDidLoad Method
	Final Details
	Linking in the Audio Toolbox Framework

	Final Spin

	Introduction to Table Views
	Table View Basics
	Grouped and Plain Tables

	Implementing a Simple Table
	Designing the View
	Writing the Controller

	Adding an Image
	Table View Cell Styles

	Additional Configurations
	Setting the Indent Level
	Handling Row Selection
	Changing Font Size and Row Height
	What Else Can the Delegate Do?

	Customizing Table View Cells
	The Cells Application
	Adding Subviews to the Table View Cell
	Using a Custom Subclass of UITableViewCell

	Grouped and Indexed Sections
	Building the View
	Importing the Data
	Implementing the Controller
	Adding an Index

	Implementing a Search Bar
	Rethinking the Design
	A Deep Mutable Copy
	Updating the Controller Header File
	Modifying the View
	Modifying the Controller Implementation

	Putting It All on the Table

	Navigation Controllers and Table Views
	Navigation Controllers
	Stacky Goodness
	A Stack of Controllers

	Nav, a Hierarchical
	Application in Six Parts
	Constructing the Nav Application’s Skeleton
	Creating the First Level View Controller
	Setting Up the Navigation Controller

	Our First Subcontroller: The Disclosure Button View
	Our Second Subcontroller: The Checklist
	Our Third Subcontroller: Controls on Table Rows
	Our Fourth Subcontroller: Moveable Rows
	Editing Mode
	Creating a New Second-Level Controller

	Our Fifth Subcontroller: Deletable Rows
	Our Sixth Subcontroller: An Editable Detail Pane
	Creating the Data Model Object
	Creating the Controllers
	Creating the Detail View Controller

	But There’s One More Thing. . .
	Breaking the Tape

	Application Settings and User Defaults
	Getting to Know Your Settings Bundle
	The AppSettings Application
	Creating the Project
	Working with the Settings Bundle
	Adding a Settings Bundle to Our Project
	Setting Up the Property List
	Adding a Text Field Setting
	Adding a Secure Text Field Setting
	Adding a Multivalue Field
	Adding a Toggle Switch Setting
	Adding the Slider Setting
	Adding a Child Settings View

	Reading Settings in Our Application
	Changing Defaults from Our Application
	Beam Me Up, Scotty

	Basic Data Persistence
	Your Application’s Sandbox
	Getting the Documents Directory
	Getting the tmp Directory

	File Saving Strategies
	Single-File Persistence
	Multiple-File Persistence

	Persisting Application Data
	Property List Serialization

	The Persistence Application
	Creating the Persistence Project
	Designing the Persistence Application View
	Editing the Persistence Classes
	Archiving Model Objects
	Implementing NSCopying

	The Archiving Application
	Implementing the FourLines Class
	Implementing the PersistenceViewController Class

	Using iPhone’s Embedded SQLite3
	Setting Up a Project to Use SQLite3

	Using Core Data
	Entities and Managed Objects
	Key-Value Coding
	Putting It All in Context
	Creating New Managed Objects
	Retrieving Managed Objects
	Designing the Data Model
	Creating the Persistence View and Controller
	Making Persistence View Controller our Application’s Root Controller

	Persistence Rewarded

	Drawing with Quartz and OpenGL
	Two Views of a Graphical World
	This Chapter’s Drawing A pplication
	The Quartz Approach to Drawing
	Quartz 2D’s Graphics Contexts
	The Coordinates System
	Specifying Colors
	Drawing Images in Context
	Drawing Shapes: Polygons, Lines, and Curves
	Quartz 2D Tool Sampler: Patterns, Gradients, and Dash Patterns

	Building the QuartzFun Application
	Creating a Random Color
	Defining Application Constants
	Implementing the QuartzFunView Skeleton
	Adding Outlets and Actions to the View Controller
	Updating QuartzFunViewController.xib
	Drawing the Line
	Drawing the Rectangle and Ellipse
	Drawing the Image
	Optimizing the QuartzFun Application

	Some OpenGL ES Basics
	Building the GLFun Application
	Design the Nib, Add the Frameworks, Run the App

	Drawing a Blank

	Taps, Touches, and Gestures
	Multitouch Terminology
	The Responder Chain
	Forwarding an Event: Keeping the Responder Chain Alive

	The Multitouch Architecture
	The Four Gesture Notification Methods

	The Touch Explorer Application
	The Swipes Application
	Implementing Multiple Swipes
	Detecting Multiple Taps
	Detecting Pinches
	Defining Custom Gestures
	The CheckPlease Touch Methods

	Garçon? Check, Please!

	Where Am I? Finding Your Way with Core Location
	The Location Manager
	Setting the Desired Accuracy
	Setting the Distance Filter
	Starting the Location Manager
	Using the Location Manager Wisely

	The Location Manager Delegate
	Getting Location Updates
	Getting Latitude and Longitude Using CLLocation
	Error Notifications

	Trying Out Core Location
	Updating Location Manager
	Determining Distance Traveled

	Wherever You Go, There You Are

	Whee! Accelerometer!
	Accelerometer Physics
	Accessing the Accelerometer
	UIAcceleration
	Implementing the accelerometer:didAccelerate: Method

	Shake and Break
	The Code That Breaks
	Load the Simulation Files
	All Better—The Healing Touch

	The Rolling Marble Program
	Implementing the Ball View Controller
	Writing the Ball View
	Calculating Ball Movement

	Rolling On

	iPhone Camera and Photo Library
	Using the Image Picker and UII magePickerController
	Implementing the Image Picker Controller Delegate
	Road Testing the Camera and Library
	Designing the Interface
	Implementing the Camera View Controller

	It’s a Snap!

	Application Localization
	Localization Architecture
	Using String Files
	Creating the Strings File

	Real-World iPhone: Localizing Your A pplication
	Looking at the Current Locale
	Trying Out LocalizeMe
	Localizing the Nib
	Looking at the Localized Project Structure
	Localizing an Image
	Localizing the Application Icon
	Generating and Localizing a Strings File

	Where to Next?
	Getting Unstuck
	Apple’s Documentation
	Mailing Lists
	Discussion Forums
	Web Sites
	Blogs
	Dave and Jeff Blogs and Twitter
	More iPhone 3 Development
	And If All Else Fails. . .

	Farewell

	index

